期刊文献+

基于火焰区域跳动特性的高速公路隧道火灾火焰检测方法 被引量:3

Detection Method for Flame of Fire in Expressway Tunnel Based on Bouncing Characteristics of Flame Areas
下载PDF
导出
摘要 为了准确检测高速公路隧道火灾火焰,提出一种基于火焰区域跳动特性的火焰检测方法,其利用小波变换的高频敏感性来分析高速公路隧道视频火焰区域的高度变化特性。首先对视频图像进行背景更新,提取运动区域并滤除移动车辆的灯光干扰;然后在HSI颜色模型下识别出类似火焰颜色的疑似区域。疑似区域变化是火焰跳动特性的直接体现,故基于这一特点,对连续多帧图像疑似区域的高度变化曲线进行小波分解,并利用小波高频分量系数的局部极大值数量来判断视频图像中是否存在火焰。仿真试验结果表明,此种算法具有很高的准确性和有效性。 In order to detect flame of fire in expressway tunnel accurately,this paper proposes a flame detection method based on bouncing characteristics of flame area,which analyzes characteristics of height changes of flame areas in video in expressway tunnel by means of high-frequency sensitivity of wavelet transformation.First of all the paper upgrades the background of video image,extracts moving areas ant filters out light interference of vehicles in movement;and then recognizes suspected areas with similar flame colors under HIS color model.Changes of suspected areas are direct reflection of bouncing characteristics of flame,so based on which the paper conducts wavelet decomposition for curves height changes of the suspected areas of continuous multiple images,and judges whether flame exists in video images by means of the number of local maximum value of high-frequency component coefficient of wavelet.The result of simulating test shows thatthis algorithm exhibits very high accuracy and effectiveness.
出处 《公路交通技术》 2013年第4期138-141,144,共5页 Technology of Highway and Transport
基金 国家山区公路工程技术研究中心开放基金(gsgzj-2011-08)
关键词 公路隧道 HSI颜色模型 疑似区域 火焰高度 小波 highway tunnel HIS color model suspected area flame height wavelet
  • 相关文献

参考文献8

二级参考文献50

共引文献123

同被引文献23

  • 1任慧,孙继平,刘晓阳.矿用电缆火灾图像识别方法[J].辽宁工程技术大学学报(自然科学版),2007,26(1):85-88. 被引量:6
  • 2VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer-verlag,1995. 被引量:1
  • 3XING C,LI D,MA S,et al.Robust Transceiver Design for MIMO-OFDM Systems Based on Cluster Water-filling[J].IEEE Communication Letters,2013,17(7):1451-1454. 被引量:1
  • 4CORTES C,VAPNIK V.Support-vector Networks[J].Machine Learning,1995,20:273-297. 被引量:1
  • 5KARABOGA D,BASTURK B.A Powerful and Efficient Algorithm for Numerical Function Optimization Artificial bee Colony(ABC) Algorithm[J].Journal of Global Optimization,2007,39(3):459-471. 被引量:1
  • 6KARABOGA D,AKAY B.A Comparative Study of Artificial Bee Colony Algorithm[J].Applied Mathematics and Computation,2009,214(1):108-132. 被引量:1
  • 7HIDEAKI Yamagishi,JUNICHl Yamaguchi.Fire flame detection algorithm using a color camera[C]//Proceedings of the International Symposium on Micromechatronics and Human Science.lEEE, Piscataway,N J,United States,1999:255-260. 被引量:1
  • 8HIDEAKI Yamagishi,JUNICHl Yamaguchi.A contour fluctuation data processing method for fire flame detection using a color camera[C] # IEEE 26th Annual Conference on IECON of the Industrial Electronics Society,Nagoya,Japan,IEEE Computer Society,2000(2): 824-829. 被引量:1
  • 9WALTER Phillips IlI,MUBARAK Shah, NIELS Da Vitoria Lobo. Flame recognition in video[J].Pattern Recognition Letters,Elsevier, 2002,23(2) :319-327. 被引量:1
  • 10LIU Chebin,AHUJA Narendra.Vision based fire detection[C]//17th International Conference on Pattern Recognition (ICPR'04).Cambridge, United Kingdom: I EEE Press,2004,4:134-137. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部