摘要
确定满足条件 f(xyz) =f(xzy)的函数方程 f(xy) + f(xy-1) =[Ψ(y) +Ψ(y) -1]f(x) + [Ψ(x) +Ψ(x) -1]f(y) +F(x)F(y)的一般解 .
Our main goal is to determine the general solution of the functional equation f(xy)+f(xy -1 )=[ Ψ (y)+ Ψ (y) -1 ]f(x)+[ Ψ (x)+ Ψ (x) -1 ]f(y)+F(x)F(y) with f(xyz)=f(xzy) where f , F are complex_valued functions defined on a group, and Ψ : G→C-{0} is an exponential.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2000年第8期40-43,共4页
Journal of South China University of Technology(Natural Science Edition)
关键词
函数方程
一般解
指数
functional equation
group
general solution