期刊文献+

纳米锌去除水体中As(Ⅲ)吸附动力学和影响因素 被引量:2

Kinetics and Impact Factors for Nanoscale Zinc Adsorption of Arsenite from Water
下载PDF
导出
摘要 As(Ⅲ)毒性高,易迁移,且是厌氧条件下地下水中主要存在形式。纳米铁颗粒在含砷水体处理中受到广泛关注,而锌具有比铁更低的氧化还原电位且更易保存,被认为是用于氯代有机化合物还原的最佳金属,但有关纳米锌用于水体中砷的研究很少。本文研究了纳米锌吸附As(Ⅲ)的反应动力学性质和吸附As(Ⅲ)的主要影响因素。通过应用准一级动力学、准二级动力学和粒内扩散三种模型对吸附过程进行模拟,结果显示纳米锌吸附As(Ⅲ)的过程更符合二级反应动力学模型,速率常数k2为0.18 g/(mg.min),吸附量为0.47 mg/g,且去除机理以化学吸附为主。批实验结果表明,纳米锌对As(Ⅲ)吸附最佳条件为:振荡时间120 min,纳米锌投加量2.5 g/L,pH值2~7。在最佳实验条件下,纳米锌对起始浓度为0.565 mg/LAs(Ⅲ)和0.568 mg/L As(Ⅴ)进行吸附试验,As(Ⅲ)和As(Ⅴ)的去除率均能达到99.5%以上,表明纳米锌对As(Ⅲ)和As(Ⅴ)都有很好的去除效果,可作为处理水体中砷的吸附材料之一。以纳米锌作为吸附材料与传统方法相比,并不需要将As(Ⅲ)预氧化成As(Ⅴ),在实际应用中可简化水处理程序,节约处理成本。 As(Ⅲ) is a highly toxic,mobile,and predominant arsenic species in anoxic groundwater.The removal of arsenic in contaminated water by using nanoscale iron particles has received extensive attention.The reduction potential and storage of Zn is lower and easier than that of Fe.Therefore,Zn is considered to be the best choice for the reduction of chlorinated organic compounds.To our knowledge,there is little research on the reduction of arsenic with nanoscale zinc in water.The objectives of this study were to investigate kinetics and impact factors by batch experiments.Pseudo-first-order,second-order kinetics and the intraparticle diffusion model were applied to simulate the sorption process.The sorption process was best fitted by the pseudo-second-order kinetic with reaction rate constants(k 2) of 0.18 g/(mg·min).The adsorption capacity of nanoscale zinc for As(Ⅲ) was 0.47 mg / g.Chemical adsorption is the main mechanism of As(Ⅲ) removal by nanoscale zinc.The shaking time for optimum removal of As(Ⅲ) has been noted as 120 min for nanoscale zinc.The adsorbent dose for nanoscale zinc is 2.5 g / L.Maximum removal of As(Ⅲ) was observed in the pH range of 2-7.Over 99.5% As(Ⅲ) and As(Ⅴ) were removed within 120 min in an initial concentration of 0.565 g / L.These results suggest that nanoscale zinc particles can be used for treating As-affected groundwater that contains substantial As(Ⅲ) without preoxidation of As(Ⅲ) to As(Ⅴ).In comparison with traditional methods,the removal of As(Ⅲ) by nanoscale zinc is simple,inexpensive and has a high efficiency for application in water treatment facilities.
出处 《岩矿测试》 CAS CSCD 北大核心 2013年第5期759-766,共8页 Rock and Mineral Analysis
基金 国土资源部公益性行业科研专项(200911015-05) 中国地质大调查项目--污染土壤和水体的环境控制与地球化学修复技术(1212011120286) 国家地质实验测试中心基本科研业务费项目(201012CSJ02)
关键词 纳米锌 As(Ⅲ) 吸附 动力学 影响因素 nanoscale zinc particles As(Ⅲ) adsorption kinetics impact factors
  • 相关文献

参考文献42

  • 1Mohan D , Pittman J r C U . Arsenic removal from water/ wastewaler using adsorbents-A critical review I J 1. Jourtl[J] Hazttrdous Mlterials ,2007, 142 : 1 - 53. 被引量:1
  • 2Nickson R, McArthur J, Burgess W, Ahmed K M, |lavenscroft P, Rahman M. Arsenic poisoning of Bangladesh groundwater [J]. Nature, 1998, 385 : 338. 被引量:1
  • 3Watkims C D, de (;root P H. A perspective on the FOCUS Con|erence on Eastern regional ground water issues [ J]. Ground Water Management, 1991, 7:967 - 978. 被引量:1
  • 4Das D, Chatterjee A, Mandal B K, Sanmnta G, Chakraborti D, Chanda B. Arsenic in ground water in six districts of West Bengal, India: The biggest arsenic eallamity in the word ( Part 2). Arsenic concentration in drinking water, hair, nails, urine, skin-scale, and liver tissue (biopsy) of the affected people [ J ]. Analyst, 1995, 120:917-924. 被引量:1
  • 5肖唐付,洪冰,杨中华,杨帆.砷的水地球化学及其环境效应[J].地质科技情报,2001,20(1):71-76. 被引量:37
  • 6庄金陵.砷对世界地下水源的污染[J].矿产与地质,2003,17(2):177-178. 被引量:37
  • 7Hering J G, Chen P Y, Wilkie .1 A, Elimeleeh M. Arsenic: removal from drinking water during coagulation [ J ]. Journal <" EmJironment Engireering, 1997, 123 (8) : 800 - 807. 被引量:1
  • 8Borho M, Wilderer P. Optimized removal of arsenate (I) by adaptation of oxidation and precipitation processes to the filtration step [ J ]. Wlter Scielzce Technology, 1996, 34(9) : 25 - 31. 被引量:1
  • 9苑宝玲,李坤林,邓临莉,张之东.多功能高铁酸盐去除饮用水中砷的研究[J].环境科学,2006,27(2):281-284. 被引量:43
  • 10Daus B, Wennrich R, Weiss H. Sorption materials tot arsenic removal from water: A comparative study [ J ]. Water Research, 2004, 38 : 2948 - 2954. 被引量:1

二级参考文献131

共引文献242

同被引文献40

  • 1张增光,翟雅琴,王松鹤.纳米氧化铁絮凝剂在册田水库源水处理中的应用[J].化工进展,2009,28(S2):203-207. 被引量:2
  • 2薛美香.土壤重金属污染现状与修复技术[J].广东化工,2007,34(8):73-75. 被引量:25
  • 3孙铁衍,李培军,周启星,等.土壤污染形成机理与修复技术[M].北京:科学出版社,2005. 被引量:5
  • 4刘文华,冯超,李锡坤等.土壤重金属污染稳定钝化修复技术研究与应用[M].北京.地质出版社,2013.447-453. 被引量:1
  • 5国家环境保护总局.污水综合排放标准[S].GB8978-1996.北京:中国标准出版社,1998.1-4. 被引量:1
  • 6中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.农田灌溉水质标准[S].GB5084-2005.北京.中国标准出版社2006.1-4. 被引量:1
  • 7中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.土壤质量总汞,总砷,总铅的测定原子荧光法第1部分:土壤中总汞的测定[S].GB/T22105.1-2008.北京:中国标准出版.2008.1-3. 被引量:1
  • 8中华人民共和国国家质量监督检验检疫总局.中国国家标准化管理委员会.土壤质量总汞,总砷,总铅的测定原子荧光法第2部分:土壤中总砷的测定[S].GB/T22105.2-2008.北京:中国标准出版,2008.1-2. 被引量:1
  • 9国家教育委员会.波长色散型X射残荧光光谱方法通则[S].JY/T016-1996,北京:中国标准出版杜.1997.281-287. 被引量:1
  • 10中华人民共和国国家质量监督检验检疫总局.中国国家标准化管理委员会.硅酸盐岩石化学分析方法,第30部分:44个元素量的测定[S].GB/T14506.30-2010.北京:中国标准出版社,2011.1-13. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部