期刊文献+

平坦环路空间上布朗桥测度的刻画

The Characterization of Brownian Bridge Measure on the Flat Loop Space
下载PDF
导出
摘要 通过选取适当的向量场以及Lévy准则,得到如下结果:平坦环路空间上的布朗桥测度可由相应的分部积分公式唯一刻画。此结果对研究平坦环路空间上的Stein方程有重要意义。 By choosing proper vector and L6vy criterion, we show that the Brownian bridge measure on the fiat loop space can be characterized through the integration by parts formula on the fiat loop space. This result plays an important role in the constructing of the Stein function on the fiat loop space.
作者 孙晓霞
机构地区 东北财经大学
出处 《廊坊师范学院学报(自然科学版)》 2013年第4期17-20,共4页 Journal of Langfang Normal University(Natural Science Edition)
关键词 平坦环路空间 分部积分公式 布朗桥测度 fiat loop space integration by parts formula Brownian bridge measure
  • 相关文献

参考文献12

  • 1Louis. H. Y. Chen and Qi-Man Shao. A non-uniform Berry Esseen bound via Stein' s method [ J]. Probability Theory and Related Fields, 2001,120 : 236 - 254. 被引量:1
  • 2Louis H. Y. Chen and Qi-Man Shao. Normal approximation under local dependence [ J]. The Annals of Probability, 2004,32 : 1985 - 2028. 被引量:1
  • 3A. D. Barbour. Stein's method and poisson process conver- gence[ J]. Journal of Applied Probability, 1988,25A : 175 - 184. 被引量:1
  • 4A. D. Barbour and Louis H. Y. Chen, editors. An Introduc- tion to Stein's Method [ C]. volume 4 of Lecture Notes Se- ries, Institute for Mathematical Sciences, National U niversi- ty of Singapore. Singapore University Press/World Scientif- ic, 2005. 被引量:1
  • 5Louis H. Y. Chen and Qi-Man Shao. Stein's Method for Normal Approximation[C]. volume 4 of L~ture Notes Se- ries, Institute for Mathematical Sciences, National U niversi- ty of Singapore, pages 1 - 59. 被引量:1
  • 6Singapore University Press/ World Scientific, 2005. I,~an Nourdin, Gio,Janni Peecati, and Anthony R~'~'eillac. Multivariate normal approximation using Stein' s method and Malliavin calculus [ J]. Annales de 1' Institut Henri Poincar0, Probabilit0s et S tatistiques, 2010,46 : 45 - 58. 被引量:1
  • 7Elton P. Hsu. Characterization of Brownian Motion on Manifolds Through Integration by Parts [ C ]. volume 5 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, pages 195 - 208. Singa- pore University Press/World Scientific,2005. 被引量:1
  • 8金国.路径空间扩散测度的分部积分公式及特征刻画[D].中科院数学与系统科学研究院硕士论文,2005. 被引量:1
  • 9Hsin-Hung Shih. On Stein' s method for iIffinite-dimensio,ml Gaussian approximation in abstract Wiener spaces[J]. Journal of Functional Analysis, 201 i, 261 (5) : 1236 - 1283. 被引量:1
  • 10Ehon P. Hsu. Stochastic Analysis on Manifolds[ M]. vol- ume 38 of Graduate Studies in Mathematics. American Mathematical Society, Rhode, 2002. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部