摘要
在通信系统中,采用信道编码技术保证传输信息的可靠性,RS码具有较强纠错能力,在现代数字通信中得到广泛应用。因此,在信息截获领域中RS码盲识别问题也尤为重要。为解决本原RS码和缩短RS码的盲识别,提出了一种RS码的盲识别方法。该方法基于伽罗华域的高斯约当消元法,遍历估计码长和码长对应的本原多项式,并引入方差来识别真实码长和本原多项式,最后利用伽罗华域的离散傅里叶变换(GFFT)实现RS码生成多项式的识别。仿真结果表明,提出的方法可以有效识别RS码码长、生成多项式、本原多项式,并且有一定的容错性。
In communication system,the channel coding technology is commonly used to guarantee the reliability of the information transmission.the RS code has strong error correction capability,and it is widely used in modern digital communication.So it is important to identify the parameters of RS code in the information interception field.To identify the primitive RS code and shortening RS code,this paper proposes a method based on Gauss Jordan elimination method,the method traverses code length and corresponding primitive polynomial,and introduces the variance to identify real code length and primitive polynomial,uses Galois discrete Fourier transform(GFFT) to achieve the generator polynomial of RS code finally.The simulation results show that the proposed method can effectively identify the code length,the generator polynomial and the primitive polynomial of the RS code and has a certain fault tolerance.
出处
《电子测量与仪器学报》
CSCD
2013年第8期781-787,共7页
Journal of Electronic Measurement and Instrumentation
关键词
盲识别
RS码
高斯约当消元
伽罗华域
本原多项式
blind recognition
Reed-Solomon(RS) code
Gauss Jordan elimination method
Galois filed
primitive polynomial