期刊文献+

量子随机微分方程的适应解 被引量:2

Adaptive solutions to quantum stochastic differential equations
下载PDF
导出
摘要 在两参数白噪声分析框架中,构造一类以R为指标集的广义算子Wick代数流,讨论该Wick流的基本性质,并引入广义算子意义下的量子随机过程关于该Wick流的适应性概念,探讨一类量子随机微分方程关于该Wick流的适应解. A class of generalized operator Wick filtration with R as its index set was constructed within the analysis framework of biparametric white noise. Fundamental properties of this Wick filtration were discusse& And a notion of adaptability of quantum stochastic processes in terms of generalized operators to the Wick filtration was introduced. The adaptive solution of a class of quantum stochastic differential equations to this Wick filtration was explored.
出处 《兰州理工大学学报》 CAS 北大核心 2013年第4期166-168,共3页 Journal of Lanzhou University of Technology
关键词 白噪声 广义算子 wick流 量子随机Cable方程 适应解 white noise generalized operator Wick filtration quantum stochastic Cable equation adaptive solution
  • 相关文献

参考文献3

二级参考文献14

  • 1Applebaum D., Quantum martingale measures and stochastic partial differential equations in Fock space, J. Math. Physics, 1998, 39: 3019-3030. 被引量:1
  • 2Hida T., Kuo H. H., Potthoff J., Strait L., White Noise-An Infinite Dimensional Calculus, Dordrecht: Kluwer, 1993. 被引量:1
  • 3Huang Z. Y., Yan J. A., Introduction to Infinite Dimensional Stochastic Analysis, Dordrecht: Kluwer, 1997. 被引量:1
  • 4Luo S. L., Wick algebra of generalized operators involving quantum white noise, J. Operator Theory, 1997, 38: 367-378. 被引量:1
  • 5Huang Z. Y., Luo S. L., Quantum white noises and free fields, IDAQP, 1998, 1: 69-82. 被引量:1
  • 6Huang Z. Y., Luo S. L., Wick calculus of generalized operators and its applications to quantum stochastic calculus, IDAQP, 1998, I: 455-466. 被引量:1
  • 7Obata N., Wick product of white noise operators and quantum stochastic differential equations, J. Math. Soc. Japan, 1999, 51: 613-641. 被引量:1
  • 8Walsh J., An Introduction to Stochastic Partial Differential Equations, LNM 1180, Springer, 1986, 266-439. 被引量:1
  • 9Holden H., Фksendal B., UbФe J. and Zhang T., Stochastic Partial Differential Equations, Birkhauser, 1996. 被引量:1
  • 10Huang Z. Y., Quantum white noise, Nagoya Math. J., 1993, 129: 23-42. 被引量:1

共引文献12

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部