期刊文献+

基于贝叶斯压缩感知的冲击声识别

Impact sounds recognition based on Bayesian compressive sensing
下载PDF
导出
摘要 针对目前冲击声识别系统稳健性较差问题,提出一种基于贝叶斯压缩感知(BCS)的冲击声识别方法。该方法基于BCS模型,根据训练样本构造传感矩阵;基于稀疏系数的分布特性设计分类算法完成目标识别;将提出的方法与传统分类算法的识别结果做了对比和分析。实验结果表明:提出的方法能够对识别相似冲击声进行精确分类,识别精度和抗噪性均优于SVM和GMM分类算法。 For the poor robustness of impact sounds recognition system available, an impulsive sound recognition method based on Bayesian compressive sensing (BCS) is proposed. The method is based on the BCS model. The sensing matrix is con-structed by the training samples. The target recognition is accomplished by designing sorting algorithm on the basis of distribu- tion character of sparse coefficient. The recognition results from the new method and traditional classification algorithm are com- pared and analyzed. The experimental results show that the method can accurately distinguish sounds with very similar properties and outperforms the SVM and GMM methods in recognition precision and noise immunity.
出处 《现代电子技术》 2013年第17期52-54,共3页 Modern Electronics Technique
基金 国家自然科学基金项目(11074202)
关键词 冲击声 压缩感知 观测矩阵 特征提取 impact sound compressive sensing measurement matrix feature extraction
  • 相关文献

参考文献7

  • 1CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004.. 被引量:111
  • 2DAVENPORT M, DUARTE M, WAKIN M, et al. The smashed filter for compressive classification and target recognition [C]// Proceedings of SPIE Computational Imaging V. San Jose, Cali- fornia, USA: SPIE, 2007: 326-330. 被引量:1
  • 3CANDES E J, ROMBERG J, TAO T. Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete fre- quency information [J]. IEEE Transactions on Information Theo- ry, 2006, 52(2): 489-509. 被引量:1
  • 4CANDES E, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. 被引量:1
  • 5DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306. 被引量:1
  • 6CANDES E J, TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51 (12): 4203-4215. 被引量:1
  • 7PEARLMUTTER B A, POTLURU V K. Sparse separation: principles and tricks [C]// Proceedings of Independent Compo- nent Analyses, Wavelets, and Neural Networks. Orlando, FL, USA : SPIE, 2003 : 1-4. 被引量:1

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部