期刊文献+

基于NSVM的核空间训练数据减少方法 被引量:2

Nonlinear Support Vector Machine for Training Data Reduction in Kernel Space
下载PDF
导出
摘要 针对核空间中大数据集的计算代价高问题,提出用NSVM方法减少分类器的训练数据。先用NSVM、核主成分分析(KPCA)和贪婪KPCA分别从全部训练数据中提取训练分类器的子集;再用子集训练分类器,并用训练和测试数据的错分率对分类结果进行评价。在两个数据集和两种分类器中,用KPCA提取的子集训练的分类器的分类性能弱于NSVM和贪婪KPCA,但用贪婪KPCA提取的子集训练的分类器的泛化能力弱于NSVM。仿真结果表明,用NSVM方法提取的子集训练的分类器,不仅保证了分类器的泛化能力,也降低了分类算法的计算复杂度。 Aiming at the high computational cost issue for large data sets in kernel space, the non-linear support vector machine (NSVM) is proposed to reduce training data of classifier. First, a subset of training classifier is extracted from full training data by using NSVM, kernel principal component analysis (KPCA), and greedy kernel principal component analysis (GKPCA), respectively. Then, the classifier is trained by those subsets, respectively. Finally, the classification results are evaluated by the error rate of the training and test data. The classification performance of the classifier trained by the subsets from the KPCA method is inferior to those of from the NSVM and the GKPCA methods, but the generalization of the classifier trained by the subset from the GKPCA method is inferior to those of from the NSVM method for two data sets through two the classifiers. Simulation results indicate that the classifier trained by the subset from the NSVM method not only ensures the generalization ability of classifier, but also reduces the computational complexity of the classification algorithm.
作者 王晓 刘小芳
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2013年第4期592-596,共5页 Journal of University of Electronic Science and Technology of China
基金 四川省教育厅重点项目(11ZA124) 人工智能四川省重点实验室开放基金(2011RYJ02)
关键词 分类器 贪婪核主成分分析 核主成分分析 非线性支持向量机 支持向量 训练数据 classifier greedy kernel principal component analysis kernel principal component analysis non-linear support vector machine support vectors training data
  • 相关文献

参考文献15

  • 1SHAWE-TAYLO J, CRISTIANINI N, Kernel methods for pattern analysis[M]. Cambridge: Cambridge University Press, 2004:15-25. 被引量:1
  • 2CAMPS-VALLS ~ SHERVASHIDZE N, BORGWARDT M K. Spatio-spectral remote sensing image classification with graph kernels[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 741-745. 被引量:1
  • 3LIU Xiao-fang. Research on remote sensing image classification methods based on kernel theory[D]. Chengdu: University of Electronic Science and Technology of China, 2011. 被引量:1
  • 4王介生,高宪文,张勇.基于图像纹理特征和多级SVM的浮选过程状态识别方法[J].控制与决策,2010,25(10):1523-1526. 被引量:7
  • 5FRANC V, HLAV,/~t2 V. Greedy algorithm for a training set reduction in the kernel methods[M]. Heidelberg: Springer- Verlag Berlin, 2003. 被引量:1
  • 6FRANC V. Optimization algorithms for kernel methods[D]. Czech: Czech Technical University, 2005. 被引量:1
  • 7TANGKUAMPIEN T, SUTER D. Human motion de-noising via greedy kernel principal component analysis filtering [C]//Proc of the IEEE 8th International Conference on Pattern Recognition. Piscataway, USA: IEEE, 2006. 被引量:1
  • 8刘小芳,何彬彬,李小文.基于greedy GDA的训练数据减少和非线性特征提取方法[J].控制与决策,2011,26(10):1511-1514. 被引量:1
  • 9QIN Jian-ling, LI Jun. Theory of feature extraction and samples filtration based on KPCA[C]//Proe of the 12th International Conference on Industrial Engineering and Engieering Management. Beijing: Industrial Engineering Institute of China, 2005:1577-1580. 被引量:1
  • 10SCH(3LKOPF B, SMOLA A, MULLER K R. Nonline~x component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998(10): 1299-1319. 被引量:1

二级参考文献22

  • 1何学文,赵海鸣.支持向量机及其在机械故障诊断中的应用[J].中南大学学报(自然科学版),2005,36(1):97-101. 被引量:46
  • 2王红平,齐春,李金标,张忠信.基于主成分分析的矿物浮选泡沫图像分类与识别[J].矿冶,2005,14(3):79-82. 被引量:7
  • 3许建华,张学工.经典线性算法的非线性核形式[J].控制与决策,2006,21(1):1-6. 被引量:12
  • 4Suichies M, Leroux D, Dechert C, et al. An implementation of generalized predictive control in a flotation plant[J]. Control Engineering Practice, 2000, 8(3): 319 - 325. 被引量:1
  • 5Cilek E C. Application of neural networks to predict locked cycle flotation test results[J]. Minerals Engineering, 2002, 15(12): 1095-1104. 被引量:1
  • 6Harrave J M, Hall S T. Diagnosis of concentrate grade and mass flowrate in tin flotation from color and surface texture analysis[J]. Mineral Engineering, 1997, 10(6): 6-13. 被引量:1
  • 7Kaartinen J, Hatonen J, Hyotyniemi H, et al. Machinevision-based control of zinc flotation -- A case study[J]. Control Engineering Practice, 2006, 14(12): 1455-1466. 被引量:1
  • 8Zhu J, Wang Y K. Application of image recognition system in flotation process[C]. Proc of the 7th WCICA. New York: IEEE Press, 2008: 655-659. 被引量:1
  • 9Kennedy J, Eberhart R. Particle swarm optimization[C]. Proc IEEE Int Conf on Neural Networks. Perth: IEEE Press, 1995: 1942-1948. 被引量:1
  • 10Scholkopf B, Smola A J. Learning with kernels[M]. Cambridge: MIT Press, 2002: 53-55. 被引量:1

共引文献6

同被引文献1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部