期刊文献+

不确定可逆规划的强循环规划解 被引量:4

Solving Strong Cyclic Planning in Nondeterministic Reversible Planning Domain
下载PDF
导出
摘要 动作的执行在理想情况下是确定的,但现实生活中常常因为意外情况的发生而造成了不确定性,并产生不利影响.针对这种情况,建立了一种新的不确定规划模型,在不确定规划中增加了两个约束:1)所有动作的执行是可逆的;2)若一个状态在理想情况下不能达到目标,那么它不能企图在执行一个动作时发生意外而接近或达到目标.在该模型下设计了求解强循环规划的算法,首先只考虑所有动作的执行是在理想情况下发生的,这时可以将规划子图转换为规划子树并求出规划子树中每个状态的可达性;接下来考虑所有动作执行意外的情况,若动作被意外执行之后不能到达目标状态,则删除这个动作并更新规划子图和规划子树,最后通过遍历规划子图和规划子树求强循环规划解.考虑到有些意外的发生并不可预知,该算法能够在意外发生时只对部分失效的规划解进行更新而不需要重新求规划解.实验结果证明该算法能够快速地更新规划解且与问题的规模大小无关. The execution of actions is deterministic under ideal conditions. But in accidents cause uncertainty and make negative impact. In response to the real world, many this status, a new nondeterministic planning model is established, and two constraints are added in nondeterministic planning. 1)The execution of all actions is reversible ~ 2)If an action is executed in accidents, it is only possible to deviate from the target states. A solution {or strong cycle planning is proposed in the model. At the first step, the execution of all actions is supposed to occur in ideal situation. Then, planning subgraph is converted to planning subtree and seeking out reachability of each state in planning tree. And then, the accident situation that execution of actions cause is considered. If it cannot reach target state that action is executed by accident, this action is deleted and planning subgraph and planning subtree are updated, Finally, the algorithm solves strong cycle planning through traversal planning subgraph and planning subtree. Taking into account some accidents are unpredictable, the algorithm only updates the part of solution which is already invalid and needn't get repeatedly a solution. Experimental results show that the algorithm can quickly update planning solution and the problem is independent o~ the size.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期1970-1980,共11页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61070232 61272295 61105039)
关键词 不确定可逆规划 规划子树 规划子图 强循环规划 不可靠执行 nondeterministic reversible planning planning subgraph planning subtree strong cyclicplanning unreliable execution
  • 相关文献

参考文献23

  • 1Ghallab M, Nau D, Traverso P. Automated Planning Theory and Practice[MJ. San Francisco, CA: Morgan Kaufmann, 2004. 被引量:1
  • 2Yang Qiang, Wu Kangheng ,Jiang Yunfei. Learning action models from plan examples using weighted Max-SAT[J]. Artificial Intelligence, 2007, 171(2(3): 107-143. 被引量:1
  • 3Gil Y. Description logics and planning[J]. Al Magazine, 2005,26(2): 73-84. 被引量:1
  • 4吕帅,刘磊,魏唯,高冰冰.智能规划的逻辑编码方式研究[J].计算机研究与发展,2012,49(3):607-619. 被引量:2
  • 5McDermott D. PDDL-the planning domain definition language, CVC TR-98-003fDCS TR-1l65[RJ. New Haven: Yale Center for Computational Vision and Control, 1998. 被引量:1
  • 6Gerevini A. Long D. Plan const rairus and preferences in PDDL3: The language of the fifth international planning competition[R]. Brescia, Italy: University of Brescia, 2005. 被引量:1
  • 7Blum A L, Furst M L. Fast planning through planning graph analysis[CJ I/Proc of the 14th IntJoint Conf on Artificial Intelligence (] JCAI'95). San Francisco, CA: Morgan Kaufmann, 1995: 1636-1642. 被引量:1
  • 8Bertoli P, Cimani A, Pistore M, et al. MBP: A model based planner[CJ IIProc of the 17th IntJoint Conf on Artificial Intelligence (] JCAI'OI) Workshop on Planning under Uncertainty and Incomplete Information. San Francisco, CA: Morgan Kaufmann, 2001: 93-97. 被引量:1
  • 9Edelkamp S. Helmert M. MIPS: The model-checking integrated planning system[J]. AI Magazine, 2001, 22(3): 67-71. 被引量:1
  • 10Kissmann P. Edelkamp S. Solving fully-observable non?deterministic planning problems via translation into a general game[GJ I/LNCS 5803: Proc of KI. Berlin: Springer, 2009: 1-8. 被引量:1

二级参考文献49

  • 1吴康恒,姜云飞.基于模型检测的领域约束规划[J].软件学报,2004,15(11):1629-1640. 被引量:17
  • 2吴向军,姜云飞,凌应标.基于STRIPS的领域知识提取策略[J].软件学报,2007,18(3):490-504. 被引量:20
  • 3吴向军,姜云飞,凌应标.STRIPS规划领域中动作效果关系的研究[J].软件学报,2007,18(6):1328-1349. 被引量:14
  • 4Ghallab M,Nan D,Traverso P.自动规划:理论和实践[M].姜云飞,杨强,凌应标,译.北京:清华大学出版社,2008. 被引量:4
  • 5McDermott D, Hendler J. Planning: What it is, what it could be, an introduction to the special issue on planning and scheduling [J]. Artificial Intelligence, 1995, 76(1/2): 1-16. 被引量:1
  • 6Bonet B, Geffner H. Planning as heuristic search [J]. Artificial Intelligence, 2001, 129(1): 5-33. 被引量:1
  • 7Fox M, Long D. PDDL2. 1: An extension to PDDL for expressing temporal planning domains [J]. Journal of Artificial Intelligence Research, 2003, 20: 61-124. 被引量:1
  • 8Roberts M, Howe A. Learning from planner performance [J]. Artificial Intelligence, 2009, 173(5/6):536-561. 被引量:1
  • 9Gerevini A E, Haslum P, Long D, et al. Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners [J]. Artificial Intelligence, 2009, 173(5/6):619-668. 被引量:1
  • 10Helmert M. International planning competition [OL]. 2008. [2009-08-13]. http,//ipc, informatik, uni-freiburg, de/. 被引量:1

共引文献26

同被引文献32

  • 1Ghallab M,Nau D,Traverso P.Automated Planning Theory and Practice[M].Massachusetts:Morgan Kaufmann Publishers,2004:1101-1132. 被引量:1
  • 2Da Silva F A G,Ciarlini A E M,Siqueira S W M.Nondeterministic planning for generating interactive plots[M].Berlin:Springer Berlin Heidelberg,2010:133-143. 被引量:1
  • 3Patrizi F,Lipovetzky N,Geffner H.Fair LTL synthesis for non-deterministic systems using strong cyclic planners[C]∥Proceedings of the Twenty-Third international joint conference on Artificial Intelligence.USA:AAAI Press,2013:2343-2349. 被引量:1
  • 4Fu J,Bastani F B,et al.Simple and fast strong cyclic planning for fully-observable nondeterministic planning problems[C]∥IJCAI Proceedings-International Joint Conference on Artificial Intelligence.2011:1949-1954. 被引量:1
  • 5Cimatti A,Roveri M,Traverso P.Strong planning in nondeterministic domains via model checking[C]∥Proceedings of the 4th International Conference on Artificial Intelligence Planning Systems (AIPS’ 98).USA:Carnegie Mellon University,1998:36-43. 被引量:1
  • 6Cimatti A,Pistore M,Roveri M,et al.Weak,strong,and strong cyclic planning via symbolic model checking[J].Artificial Intelligence,2003,147(1/2):35-84. 被引量:1
  • 7Cimatti A,Roveri M.Conformant planning via model checking andheuristic search[J].Artificial Intelligence,2004,159(1/2):127-206. 被引量:1
  • 8Bertoli P,Cimatti A,Roveri M,et al.Strong planning under partial observability[J].Artificial Intelligence,2006,170(4/5):337-384. 被引量:1
  • 9Huang Wei,Wen Zhong-hua,Jiang Yun-fei,et al.Observation reduction for strong plans[C]∥Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07).India:IJCAI,2007:1930-1935. 被引量:1
  • 10Kuter U,Nau D,Reisner,et al.Using Classical Planners to Solve Nondeterministic Planning Problems[C]∥Proc.of the 18th Int Conf on Automated Planning and Scheduling.Menlo Park,CA:AAAI press,2008. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部