期刊文献+

施工期拱坝横缝开合度垂直向分布模型初探 被引量:3

Preliminary analysis on vertical opening distribution model of arch dam transversal joint during construction
下载PDF
导出
摘要 为掌握拱坝横缝开合规律,指导大坝接缝灌浆,应用幂级数的处理方法,组合采用测缝计温度、周期项函数、垂直向坐标及对数函数,建立了基于多支测缝计的施工期混凝土拱坝横缝开合度垂直向分布统计模型。结合某在建的混凝土拱坝实测横缝开合度资料,利用逐步回归分析法获得了模型中各系数。实例分析表明,所建立统计模型的拟合精度和短期预报精度均较高,可以有效指导横缝的接缝灌浆。 In order to master the opening and closing law of transversal joints of arch dam for guiding joint grouting,by utilizing power series theory,joint meter temperature,periodic function,vertical coordinates and logarithmic function,a statistical model for vertical distribution of joint opening and closing of arch dam based on multiple joint meters in construction period is established.Through obtained joint opening data of arch dam under construction,the coefficients of the model are calculated by stepwise regression analysis.The example shows that the statistical model has high fitting precision and short-term forecast precision.
出处 《人民长江》 北大核心 2013年第15期62-64,共3页 Yangtze River
基金 国家自然科学基金项目(51079079)
关键词 分布模型 横缝开合度 施工期 混凝土拱坝 distribution model opening of transverse joint construction period concrete arch dam
  • 相关文献

参考文献6

二级参考文献13

  • 1包腾飞,吴中如.混凝土裂缝开度混合预测模型[J].水利水电技术,2005,36(11):52-55. 被引量:7
  • 2Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agent[J].IEEE Trans on Systems,Man,and Cybernetics,1996,26(1):29-41. 被引量:1
  • 3邓昌铁.意大利水电站大坝安全监控概况[J].河海大学科技情报,1989,9(2):32-42. 被引量:2
  • 4Tremmel E. Analysis of pendulum measurements [ R ]. 6th ICOLD,Q. 21, R. 15, 1958, New York. 被引量:1
  • 5Takens F. Detecting strange attractors in turbulence. In: Dynamical systems and turbulence [ J ]. Lecture Notes in Mathematics, 1981,898: 245-262. 被引量:1
  • 6Farmer J D, Sidorowich J J. Predicting chaotic time series [ J ]. Phys.Rev. Lett, 1987, 59(8): 845-848. 被引量:1
  • 7Casdagli M. Nonlinear prediction of chaotic time series[J]. Physica D., 1989, 35: 335-356. 被引量:1
  • 8Floater M S, Iske A. Multistep scattered data interpolation using compactly supported radial basis functions[ J ]. J Comput Appl. Math., 1996,73: 65-78. 被引量:1
  • 9Wu Z M. Multivariate compactly supported positive definite radial funetions[J]. Adv. Comput Math, 1995, 4: 283-292. 被引量:1
  • 10Eckmann J P, Rulle D. Ergodic theory of chaos and strange attractors[J]. Rev. Mod. Phys, 1985, 57: 617-653. 被引量:1

共引文献26

同被引文献39

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部