期刊文献+

大肠杆菌全局调控蛋白CsrA中抑制十字花科黑腐病菌胞外蛋白酶活性所必需的氨基酸残基的鉴定

Identification of the Amino Acid Residue Essential for Inhibition of the Extracellular Protease Activity of Xanthomonas campestris pathovar campestris in the Global Regulator CsrA of Escherichia coli
下载PDF
导出
摘要 CsrA/RsmA蛋白家族是细菌中一类重要的转录后全局调控因子,它们调控细菌的碳代谢、次生代谢、运动、生物被膜形成以及致病等过程。CsrA/RsmA蛋白家族通常由60~72个氨基酸基组成,其中第1至第52位氨基酸高度保守,而第53位以后的氨基酸则高度可变。目前人们认为其氨基酸高度保守性是不同种属细菌CsrA/RsmA功能和作用机理相似的基础,但是其高度可变区与不同种属CsrA/RsmA蛋白功能差异的关系尚不清楚。我们之前的研究显示,大肠杆菌(Escherichiacoli)的CsrA(CsrAE删)蛋白的高度可变区(第53至第61位氨基酸残基)具有强烈的抑制十字花科黑腐病菌(XanthomonztscampeStr/spathovarcampestris,简称‰c)胞外蛋白酶活性的能力。本研究中,我们采用丙氨酸置换方法,确定了CsrA。蒯可变区中抑制xcc胞外蛋白酶活性必需的氨基酸残基。结果显示,CsrAE枷蛋白的第54位赖氨酸(K54)、第60位丝氨酸(S60)和第61位酪氨酸(Y61)置换成丙氨酸后,csrA‰。蛋白丧失了抑制Xcc胞外蛋白酶活性的能力;而其它位点的丙氨酸置换不影响其抑制Xcc胞外蛋白酶活性的能力。这个结果证明K54、S60和Y61是CsrAE.coli抑制Xcc胞外蛋白酶活性所必需的,为揭示大肠杆菌的CsrA。融蛋白抑制Xcc胞外蛋白酶活性的分子机理奠定基础。 Members of CsrA/RsmA family of proteins are important global regulators in bacteria, and they control carbon metabolism, secondary metabolism, motility, biofilm formation and pathogenesis at post-transcriptional lev- el. CsrA/RsmA proteins are usually composed of 60-72 amino acids. The amino acids from 1st to 52nd are highly conserved while those after 52"d are highly variable. It has been known that the highly conservation in amino acid se- quences of CsrAs/RsmAs are the basis for their similarity in biological functions and regulatory mechanisms. How- ever, the function of the variable region remains unclear. In our previous study, we found that the variable region (from 53~ to 61 ~ amino acids) ofEscherichia coli CsrA~ coti has the ability to inhibit the extracellular protease activity ofXanthorrugnas campestris pathovar eampestris (Xcc). In this study, the amino acid residue essential for inhibition of the extracellular protease activity ofXanthomonas campestris pathovar campestris was determined by using ala- nine substitution analysis. Our results show that K54→A, S60→A and Y61→A substitutions abrogated of the ability ofCsrAE coZi inhibiting the extracellular protease activity of Xcc, indicating that K54, S60 and Y61 are essential for CsrAul to inhibit the extracellular protease activity ofXcc. Our study provide useful information for tmderstanding the molecular mechanism of CsrAE.coti inhibiting the extracellular protease activity ofXcc.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2013年第4期440-448,共9页 Genomics and Applied Biology
基金 国家自然科学基金项目(31071141)资助
关键词 十字花科黒腐病菌 胞外蛋白酶 大肠杆菌 CsrA 丙氨酸置换 Xanthomonas campestris pathovar campestris, Extracellular protease activity, Escherichia coli, CsrA, Alanine scanning
  • 相关文献

参考文献18

  • 1Blattner F.R., Plunkett G.3rd., Bloch C.A., Pema N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., and Shao Y., 1997, The complete genome sequence of Escherichia eoli K-12, Science, 277(5331): 1453-1462. 被引量:1
  • 2Chatterjee A., Cui Y., Liu Y., Dumenyo C.K., and Chatterjee A.K., 1995, Inactivation ofrsmA leads to overproduction of extra- cellular pectinases, eellulases, and proteases in Erwinia caro- tovora subsp, carotovora in absence of the starvation/cell densi- ty-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone, Applied and Environmental Microbiology, 61(5): 1959-1967. 被引量:1
  • 3Chao N.X., Wei K., Meng Q.L., Chen Q., Tang D.J., He Y.Q., Lu G.T., Jiang B.L., Liang X.X., Feng J.X., Chen B., and Tang J.L., 2008, The rsmA-like gene rsmAx, of Xanthomonas campestris pv. campestris is involved in the control of various cellular processes, including pathogenesis, Molecular Plant-Microbe Interactions, 21(4): 411-423. 被引量:1
  • 4Daniels M.J., Barber C.E., Turner P.C., Sawczyc M.K., Byrde R. J.W., and Fielding A.H., 1984, Cloning of genes involved in pathogenicity of Xanthomonas eampestris pv. campestris us- ing the broad-host-range cosmid pLAFR1, EMBO Journal, 3 (13): 3323-3328. 被引量:1
  • 5Fields J.A., and Thompson S.A., 2012, Cornpylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation, BMC Microbiology, 12:233. 被引量:1
  • 6Gutierrez P., Li Y., Osborne M.J., Pomerantseva E., Liu Q., and Gehring K., 2005, Solution structure of the carbon storage regulator protein CsrA from Escherichia coli, Journal of Bacteriology, 187:3496-3501. 被引量:1
  • 7Heroven A.K., Bohme K., and Dersch P., 2012, The Csr/Rsm system of Yersinia and related pathogens: A post-transcriptional strategy for managing virulence, RNA Biology, 9(4): 379-391. 被引量:1
  • 8黄明慧,陈承晓,覃振萍,唐纪良,唐东阶,晁耐霞.大肠杆菌转录后调控蛋白CsrA的C末端具有抑制十字花科黑腐病菌胞外蛋白酶活性的功能[J].基因组学与应用生物学,2012,31(4):341-348. 被引量:3
  • 9Huynh T.V., Dahlbeck D., and Staskawicz B.J., 1989, Bacterial blight of soybean: Regulation of a pathogen gene determining host cultivar specificity, Science, 245(4924): 1374-1377. 被引量:1
  • 10Lawson V.A., Priola S.A., Meade-White K., Lawson M., and Chesebro B., 2004, Flexible N-terminal region of prion protein influences conformation of protease-resistant priori protein isoforms associated with cross-species scrapie infection in vivo and in vitro, The Journal of Biological Chemistry, 279:13689-13695. 被引量:1

二级参考文献14

  • 1Blattner F.R., Plunkett G.3rd., Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., and Shao Y., 1997, The complete genome sequence of Escherichia coli K-12, Science, 277(5331): 1453-1462. 被引量:1
  • 2Chao N.X., Wei K., Meng Q.L., Chen Q., Tang D.J., He Y.Q., Lu G.T., Jiang B.L., Liang X.X., Feng J.X., Chen B., and Tang J.L., 2008, The rsmA-like gene rsmAx,.,, of Xanthomonas campestris pathovar campestris is involved in the control of various cellular processes, including pathogenesis, Molecu- lar Plant-Microbe Interactions, 21 (4): 411-423. 被引量:1
  • 3Chatterjee A., Cui Y., Liu Y., Dumenyo C.K., and Chatterjee A. K., 1995, Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp, earotovora in absence of the starvation/cell density-sensing signal, N-(3 oxohexanoyl)-L-homoserine lactone, Applied and Environmental Microbiology, 61 (5): 1959-1967. 被引量:1
  • 4Daniels M.J., Barber C.E., Turner P.C., Sawczyc M.K., Byrde R. J., and Fielding A.H., 1984, Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFRI, The EMBO Journal, 3(13): 3323-3328. 被引量:1
  • 5Dubey A.K., Baker C.S., Romeo T., and Babitzke P., 2005, RNA sequence and secondary smacture participate in high-affinity CsrA-RNA interaction, RNA, 11(10): 1579-1587. 被引量:1
  • 6Dubey A.K., Baker C.S., Suzuki K., Jones A.D., Pandit P., Romeo T., and Babitzke P., 2003, CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the estA transcript, Journal of Bacteriology, 185(15): 4450-4460. 被引量:1
  • 7Heeb S., Blumer C., and Haas D., 2002, Regulatory RNA as me- diator in GacA/RsmA-dependent global control of exoprod- uct formation in Pseudomonas fluomseens CHA0, Journal of Bacteriology, 184(4): 1046-1056. 被引量:1
  • 8Huynh T.V., Dahlbeck D., and Staskawicz B.J., 1989, Bacterial blight of soybean: Regulation of a pathogen gene determin- ing host cultivar specificity, Science, 245(4924): 1374-1377. 被引量:1
  • 9Qian W., Jia Y., Ren S.X., He Y.Q., Feng J.X., Lu L.F., Sun Q., Ying G., Tang D.J., Tang H., Wu W., Hao P., Wang L., Jiang B.L., Zeng S., Gu W.Y., Lu G., Rong L., Tian Y., Yao Z., Fu G., Chen B., Fang R., Qiang B., Chen Z., Zhao G.P., Tang J.L., and He C., 2005, Comparative and functional ge- nomic analyses of the pathogenicity of phytopathogen Xan- thomonas, carnpestris pv. campestris, Genome Research, 15 (6): 757-767. 被引量:1
  • 10Romeo T., 1998, Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB, Molecular Microbiology, 29(6): 1321-1330. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部