期刊文献+

基于MapReduce的海量事件日志并行转化算法 被引量:11

Parallel algorithm to convert big event log based on MapReduce
下载PDF
导出
摘要 随着大数据时代的来临,为了高性能地转化海量分布式日志,提出事件日志在云平台上基于MapReduce架构的分布式转化算法。提出基于案例拆分的改进算法,以转化单机上的日志,使其变得可行;进一步提出基于MapReduce的并行转化算法。这是在过程挖掘领域中首次实现从海量原始日志到可扩展事件流事件日志的并行转化,极大地提高了转化性能。 With the coming of big data time, to convert the mass distributed log in high performance, a distributed conversion algorithm of event log based on MapReduce framework was proposed. An improved algorithm based on case split was put forwarded, thus the conversion of log on single machine became feasible. Furthermore, a parallel algorithm based on MapReduce was proposed. In the area of process mining, it was the first time to realize the par- allel conversion from mass original log to eXtensible Events Stream (XES) event log, and the conversion perform- ance was improved extremely.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2013年第8期1784-1793,共10页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61003099) 国家863计划资助项目(2012AA040904) 教育部-中国移动科研基金资助项目(MCM20123011)~~
关键词 大数据 事件日志 过程挖掘 映射归约 可扩展事件流 信息系统 big data~ event log process mining MapReduce extensible event stream in{ermation system
  • 相关文献

参考文献15

  • 1COOK J E,WOLF A L.Discovering models of software processes from event-based data[J].ACM Transactions on Software Engineering and Methodology,1998,7 (3):215-249. 被引量:1
  • 2GANTZ J,REINSEL D.The digital universe decade-are you ready[EB/OL].(2010-03-10)[2012-11-25].http://viewer.media.bitpipe.com/938044859_264/1287663101_75/Digital_Universe.pdf. 被引量:1
  • 3MANYIKAJ,CHUIM,BROWNBBughinJ,et al.Bigdata:the next frontier for innovation,competition,and productivity[EB/OL].[2012-11-25].http://www.fujitsu.com/downloads/SVC/fla/03_Michael.Chui.pdf. 被引量:1
  • 4VAN DER AALST W M P.Process mining:discovery,conformance and enhancement of business processes[M].Berlin,Germany:Springer-Verlag,2011. 被引量:1
  • 5VAN DER AALST W M P,VAN GEE K,WANG Jianmin,et al.Workflow management:models,methods,and systems[M].Cambridge,Mass,USA:MIT Press,2004. 被引量:1
  • 6VERBEEK H M W,BUIJS J C A M,VAN DONGEN B F,et al.XES,xESame,and proM 6[M]//Information Systems Evolution.Berlin Germany:Springer-Verlag,2011:60-75. 被引量:1
  • 7G(U)NTHER C W.XES standard denition[EB/OL].(2009-11-25)[2013-05-06].http://www.XES-standard.org/_ media/xes/xes_standard_proposal.pdf. 被引量:1
  • 8BUIJS J,VAN DER AALST W M P,VERBEEK H M W,et al.Mapping data sources to XES in a generic way[D].Eindhoven,the Netherlands:Eindhoven University of Technology,2010. 被引量:1
  • 9G(U)NTHER C W.Process mining in flexible environments[D].Eindhoven,the Netherlands:Eindhoven University of Technology,2009. 被引量:1
  • 10BRATOSIN C.Grid architecture for distributed process mining[D].Eindhoven,the Netherlands:Eindhoven University of Technology,2006. 被引量:1

同被引文献124

  • 1詹海生,王启户.一种自适应字长的中文词库的构建方法[J].计算机研究与发展,2011,48(S1):382-386. 被引量:1
  • 2冯志新,钟诚.基于FP-tree的最大频繁模式挖掘算法[J].计算机工程,2004,30(11):123-124. 被引量:18
  • 3周建华.一种基于日志关联分析的取证模型[J].计算机时代,2007(10):28-30. 被引量:1
  • 4WANG S,GUO L,KANG L,et al.Research on selection strategy of machining equipment in cloud manufacturing[J].The International Journal of Advanced Manufacturing Technology,2014,71(4):1-15. 被引量:1
  • 5HAN J,KAMBER M,PEI J.Data mining:concepts and techniques[M].2nd ed.San Francisco,Cal.,USA:Morgan Kaufmann,2006:227-628. 被引量:1
  • 6AGRAWAL R,SHAFERJ C.Parallel mining of association rules[J].IEEE Transactions on Knowledge and Data Engineering,1996,8(6):962-969. 被引量:1
  • 7XIAO T,YUAN C,HUANG Y.PSON:a parallelized SON algorithm with MapReduce for mining frequent sets[C]//Proceedings of the 2011 4th International Symposium on Parallel Architecturs,Algorithms and Programming.Washington,D.C.,USA:IEEE,2011:252-257. 被引量:1
  • 8DEAN J,GHEMAWAT S.MapReduce:simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113. 被引量:1
  • 9KIM Y,SHIM K,KIM M S,et al.DBCURE-MR:an efficient density-based clustering algorithm for large data using MapReduce[J].Information Systems,2014,42(6):15-35. 被引量:1
  • 10LOPEZ V,DEL RIO S,BENITEZ J M,et al.Costsensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data[J].Fuzzy Sets and Systems,2015,258(1):5-38. 被引量:1

引证文献11

二级引证文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部