期刊文献+

A100钢表面粗糙度与HVOF碳化钨涂层结合强度 被引量:10

Surface roughness of AerMet100 substrate and bond strength between the substrate and HVOF WC10Co4Cr coating
下载PDF
导出
摘要 采用超音速火焰喷涂方法在AerMet100钢(A100钢)基体上制备了WC10Co4Cr涂层,研究了不同喷砂条件对AerMet100钢表面粗糙度变化及对涂层与基体结合强度的影响.之后将涂层使用化学方法退除,观察涂层制备对AerMet100钢基体表面状态的影响,分析了粗糙度与涂层结合强度之间的关系.结果表明:AerMet100钢基体不同吹砂工艺产生的表面粗糙度Sa=0.994~4.983μm时,超音速火焰喷涂WC10Co4Cr涂层的结合强度均不低于72MPa.喷涂涂层过程对基体表面状态没有较大影响:基体粗糙度Sa<2μm时,喷涂后,基体表面的粗糙度略有降低;基体粗糙度Sa>3μm时,喷涂后,基体粗糙度略有升高.超音速火焰喷涂的碳化钨钴涂层与AerMet100钢基体的结合同时存在物理与机械力结合,以前者为主要结合力. WC10Co4Cr coating was produced on the AerMetl00 alloy by high velocity oxygen fuel srpay- ing(HVOF). Effect of grit blasting on surface roughness and bond strength between AerMetl00 alloy and WC10Co4Cr coating was studied. Influence of fabrication process for the coating on the surface roughness of the substrate was also investigated. The results indicate that the bond strength between AerMetl00 alloy and WC10Co4Cr coating made by HVOF is always above 72 MPa when the roughness (S~) of the substrate is in the range from 0. 994 to 4. 983 Ixm. There is no obviously influence on substrate roughness by spraying coat- ing. The slight decrease in the surface roughness of the substrate after spraying was observed when the original S is lower than 2μm and the increase of roughness is also slight when the original S is larger than 3 μm. The physical bonding and mechanical bonding contribute to the bond strength between AerMetl00 alloy and WCCo coating, and the first one is the main factor.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第7期937-942,共6页 Journal of Beijing University of Aeronautics and Astronautics
关键词 AERMET100钢 超音速火焰喷涂 结合强度 表面粗糙度 碳化钨 热喷涂 AerMetlO0 high velocity oxygen fuel spray(HVOF) bond strength surface roughness tungsten carbide thermal spray
  • 相关文献

参考文献21

  • 1李志,赵振业.AerMet100钢的研究与发展[J].航空材料学报,2006,26(3):265-270. 被引量:50
  • 2崔永静,王长亮,汤智慧,张晓云.超音速火焰喷涂WC-17Co涂层微观结构与性能研究[J].材料工程,2011,39(11):85-88. 被引量:25
  • 3Hazra S, Sabiruddin K, Bandyopadhyay P p. Plasma and HVOF sprayed WC-Co coatings as hard chrome replacement solution [J]. Surface Engineering,2012,28( 1 ) :37-43. 被引量:1
  • 4Sartwell B D, Legg K O, Nardi A, et al. Replacement of chromi- um electroplating on C-2, E-2, P-3 and C-130 propeller hub com- ponents using HVOF thermal spray coatings [ R ]. ADA422443, 2004. 被引量:1
  • 5唐曦..基于白光干涉技术的表面粗糙度测量[D].哈尔滨理工大学,2011:
  • 6MeniniR, Salah N B, Nciri R. Stripping methods studies for HVOF WC-10Co-4Cr coating removal [ J ]. Journal of Materials Engineering and Performance, 2004,13 ( 2 ) : 185 - 194. 被引量:1
  • 7AslaS K, Sohib M H. Effect of grit-blasting parameters on the surface roughness and adhesion strength of sprayed coating[ J]. Surface and Interface Analysis,2010,42:551-554. 被引量:1
  • 8Mohammadia Z,Ziaei-Moayyed A A, Mesgar A S. Grit blasting of Ti-6A1-4V alloy: optimization and its effect on adhesion strength of plasma-sprayed hydroxyapatite coatings [ J ]. Journal of Materi- als Processing Technology ,2007,194 : 15-23. 被引量:1
  • 9Watson M. Parameters affecting bond strength and surface rough- ness in twin-wire arc spray aluminum coatings [ J ]. Advanced Materials & Processes ,2010,168 ( 5 ) :46-47. 被引量:1
  • 10边洁,葛建华.热喷涂铝过渡层对FEP涂层与钢基体结合强度的影响[J].材料热处理学报,2010,31(8):136-139. 被引量:5

二级参考文献76

共引文献139

同被引文献133

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部