期刊文献+

基于组合核函数的籼稻重度不宜存检测模型 被引量:4

Identification Model of Severely Unstorable Indica Paddy Based on Combined Kernel Function
下载PDF
导出
摘要 为给籼稻储存品质的判定提供一种快速无损检测手段,对80份重度不宜存籼稻和80份非重度不宜存籼稻的近红外反射光谱进行了实验研究。根据训练样本非线性可分的特点,选择支持向量机方法建立定性模型。在对不同核函数的特性进行分析和研究的基础上,定义了一种新的核函数——组合核函数。该组合核函数是多项式核函数与径向基核函数的线性组合,将两者各自的特点融合在一起兼具内推和外推性能。实验结果表明,以这两种函数的线性组合作为核函数且调节因子为0.7时,所建立的模型综合性能最好。所建模型的训练集正确识别率为97.21%,测试集正确识别率为93.25%。 In order to explore a rapid and non-destructive method for identifying storable quality of indica paddy,experiments were conducted on 80 samples of severely unstorable indica paddy and 80 samples of other indica paddy.Support vector machine(SVM) method was selected to build qualitative model according to training samples’characteristics.A combined kernel function was defined after analyzing and studying different kernel function.The proposed combined kernel function was the linear combination of polynomial function and radial basis function,and it combined each advantage of these two functions to acquire both interpolation and extrapolation properties of kernel function.The experiments showed that the model had the best comprehensive performance when the linear combination polynomial function and radial basis function was taken as the kernel function of SVM,and the control factor was 0.7.The training identification rate was 97.21%,and the test identification rate was 93.25%.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2013年第8期165-168,194,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家重大科技专项资助项目(4005-09500216) 中央高校基本科研业务费专项资助项目(2011PY038) 华中农业大学科技创新基金(SRF)资助项目(2012029)
关键词 籼稻 近红外光谱 组合核函数 定性模型 支持向量机 Indica paddy NIR spectroscopy Combined kernel function Qualitative model Support vector machine
  • 相关文献

参考文献10

二级参考文献46

共引文献89

同被引文献48

  • 1韩伟锋,武继承,何方.作物需水量研究综述[J].华北水利水电学院学报,2008,29(5):30-33. 被引量:26
  • 2张兵,袁寿其,成立,袁建平,从小青.基于L-M优化算法的BP神经网络的作物需水量预测模型[J].农业工程学报,2004,20(6):73-76. 被引量:50
  • 3孙威,王鹏新,韩丽娟,颜凯,张树誉,李星敏.条件植被温度指数干旱监测方法的完善[J].农业工程学报,2006,22(2):22-26. 被引量:65
  • 4郭亮,吉海彦.蚁群算法在近红外光谱定量分析中的应用研究[J].光谱学与光谱分析,2007,27(9):1703-1705. 被引量:12
  • 5Guo Tang,Kuangda Tian,Xiangzhong Song,Yanmei Xiong,Shungeng Min.Comparison of several supervised pattern recognition techniques for detecting additive methamidophos in rotenone preparation by near-infrared spectroscopy[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.2014 被引量:1
  • 6D. Cozzolino,S. Roumeliotis,J. Eglinton.Study of Water Uptake in Whole Grain Barley by Two-Dimensional Correlation Near-Infrared Spectroscopy[J].Spectroscopy Letters.2014(4) 被引量:1
  • 7Hideyuki Shinzawa,Wataru Kanematsu,Isao Noda.Rheo-optical near-infrared (NIR) spectroscopy study of low-density polyethylene (LDPE) in conjunction with projection two-dimensional (2D) correlation analysis[J].Vibrational Spectroscopy.2014 被引量:1
  • 8Lourdes Salguero-Chaparro,Antonio J. Gaitán-Jurado,Víctor Ortiz-Somovilla,Francisco Pe?a-Rodríguez.Feasibility of using NIR spectroscopy to detect herbicide residues in intact olives[J].Food Control.2013(2) 被引量:1
  • 9Bin Liu,Peng Zhou,Xiaoming Liu,Xin Sun,Hao Li,Mengshi Lin.Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures[J].Food and Bioprocess Technology.2013(3) 被引量:1
  • 10Congying Gu,Bingren Xiang,Jianping Xu.Direct detection of phoxim in water by two-dimensional correlation near-infrared spectroscopy combined with partial least squares discriminant analysis[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.2012 被引量:1

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部