期刊文献+

基于多尺度图像的主动轮廓线模型 被引量:8

ACTIVE CONTOUR MODEL BASED ON MULTI SCALE IMAGE ANALYSIS
下载PDF
导出
摘要 主动轮廓线模型是广泛应用于数字图像处理的一种目标轮廓跟踪算法 ,但在实际使用过程中 ,现有模型易受干扰噪声及虚假边缘的影响 ,且对凹陷轮廓的跟踪能力较差 .在多尺度图像分析的基础上 ,引入梯度矢量流的概念 ,并改进其计算方法 ,提出了一种新的主动轮廓线模型 .该模型利用梯度矢量流产生的引力 ,在图像的尺度空间中搜索目标轮廓 ,不仅能有效地排除干扰 ,搜索凹陷轮廓 ,而且便于引入新的约束条件 .实验表明该模型有较好的鲁棒性和实用性 ,适用于噪声干扰情况下提取具有凹凸特征的目标轮廓 . Active contour model is a widely used algorithm to track object contours in the field of digital image processing. But in the practice of application, the present models often subject to the influence of noises and fake edges, and their abilities of searching concave contour are not good. Based on the multi scale image analysis, the concept of gradient vector flow (GVF) is introduced and its algorithm is improved to present a new active contour model. The new model uses the forces produced by GVF to search object contours through the scale space of an image. It can efficiently get rid of the influence of noises and search concave contours. Furthermore, it is convenient to add new constraints to the model. Experiments prove that the new model is robust and practicable, and it is suited for searching concave or convex contours against contaminated background.
出处 《计算机研究与发展》 EI CSCD 北大核心 2000年第10期1240-1245,共6页 Journal of Computer Research and Development
基金 国家自然科学基金资助!(项目编号 6 9772 0 0 2 )
关键词 多尺度图像 主动轮廓线模型 数字图像处理 active contour, multi scale image, gradient vector flow, object tracking
  • 相关文献

参考文献3

二级参考文献2

共引文献13

同被引文献42

  • 1付宜利,高文朋,王树国.基于阈值分割的K-最近邻规则的磁共振脑图像分割算法的研究[J].医学影像学杂志,2005,15(8):644-647. 被引量:3
  • 2曾理,侯立华.基于改进Snake模型的图像分割方法[J].计算机仿真,2006,23(7):180-182. 被引量:7
  • 3[1]Kass M,Witkin A P,Terzopoulos D.Snakes:Active contour models[J].Int J Comput Vis,1988,1(1):321~331. 被引量:1
  • 4[2]Castleman K R.Digital image processing[M].Prince Hall Inc,1996. 被引量:1
  • 5[3]Xu C Y,Prince J L.Gradient vector flow:A new external force for Snakes[A].IEEE Proc Conf on Comp Vis Patt Recog (CVPR'97)[C].66~71. 被引量:1
  • 6Montera D A,Rogers S K,Runck D W,Oxley M E.Object Tracking through Adaptive Correlation.Optical Engineering,1994,33(1):294~302. 被引量:1
  • 7Srinivas M,Patnaik L M.Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms.IEEE Transactions on Systems,Man and Cybernetics,1994,24(4):656~667. 被引量:1
  • 8Parry H S,Marshall A D,Markham K C.Tracking Targets in FLIR Images by Region Template Correlation.SPIE3086:221~232. 被引量:1
  • 9Paragios N,Tziritas G.Adaptive Detection and Localization of Moving Objects in Image Sequences.Signal Processing&Image Communication,1999,14:277~296. 被引量:1
  • 10[美]DavidA ForsythJeanPonce著 林学 王宏译.Computer Vision:A Modern Approach[M].北京:电子工业出版社,2004.424-516. 被引量:1

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部