期刊文献+

Hopf bifurcation and chaos in an inertial neuron system with coupled delay 被引量:5

Hopf bifurcation and chaos in an inertial neuron system with coupled delay
原文传递
导出
摘要 In this paper, inertia is added to a simplified neuron system with time delay. The stability of the trivial equilibrium of the net- work is analyzed and the condition for the existence of Hopf bifurcation is obtained by discussing the associated characteristic equation. Hopf bifurcation is investigated by using the perturbation scheme without the norm form theory and the center man- ifold theorem. Numerical simulations are performed to validate the theoretical results and chaotic behaviors are observed. Phase plots, time history plots, power spectra, and Poincar6 section are presented to confirm the chaoticity. To the best of our knowledge, the chaotic behavior in this paper is new to the previously published works.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第9期2299-2309,共11页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 11202068 and 11032009)
关键词 time delay INERTIA Hopf bifurcation chaos 神经元系统 霍普夫分岔 混沌行为 时间延迟 惯性 耦合 Hopf分支 特征方程
  • 相关文献

参考文献1

二级参考文献31

  • 1S. L. Das,A. Chatterjee.Multiple Scales without Center Manifold Reductions for Delay Differential Equations near Hopf Bifurcations[J]. Nonlinear Dynamics . 2002 (4) 被引量:1
  • 2A. Raghothama,S. Narayanan.Periodic Response and Chaos in Nonlinear Systems with Parametric Excitation and Time Delay[J]. Nonlinear Dynamics . 2002 (4) 被引量:1
  • 3Attilio Maccari.The Response of a Parametrically Excited van der Pol Oscillator to a Time Delay State Feedback[J]. Nonlinear Dynamics . 2001 (2) 被引量:1
  • 4Tamás Kalmár-Nagy,Gábor Stépán,Francis C. Moon.Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations[J]. Nonlinear Dynamics . 2001 (2) 被引量:1
  • 5Sue Ann Campbell,Jacques Bélair,Toru Ohira,John Milton.Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback[J]. Journal of Dynamics and Differential Equations . 1995 (1) 被引量:1
  • 6Giannakopoulos F,Zapp A.Bifurcations in a planar system of dif- ferential delay equations modeling neural activity. Physica D Nonlinear Phenomena . 2001 被引量:1
  • 7Krise S,Choudhury S R.Bifurcations and chaos in a predator―prey model with delay and a laser-diode system with self-sustained pulsa- tions. Chaos Soliton Fract . 2003 被引量:1
  • 8Nayfeh A H,Chin C M,Pratt J.Perturbation methods in nonlinear dynamics―applications to machining dynamics. J Manuf Sci E-T ASME . 1997 被引量:1
  • 9Fofana M S,Cabell B Q,Vawter N, et al.Illustrative applications of the theory of delay dynamical systems. Math Comp Model . 2003 被引量:1
  • 10LIAO X F,WONG K W,WU Z F.Bifurcation Analysis in a Two -neuron System with Distributed Delays. Physica D Nonlinear Phenomena . 2001 被引量:1

共引文献14

同被引文献42

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部