期刊文献+

Video-Based Crowd Density Estimation and Prediction System for Wide-Area Surveillance 被引量:2

大范围视频监控下的人群密度估计和预测系统(英文)
下载PDF
导出
摘要 Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In this paper, we propose a video-based crowd density analysis and prediction system for wide-area surveillance applications. In monocular image sequences, the Accumulated Mosaic Image Difference (AMID) method is applied to extract crowd areas having irregular motion. The specific number of persons and velocity of a crowd can be adequately estimated by our system from the density of crowded areas. Using a multi-camera network, we can obtain predictions of a crowd's density several minutes in advance. The system has been used in real applications, and numerous experiments conducted in real scenes (station, park, plaza) demonstrate the effectiveness and robustness of the proposed method. Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In this paper, we propose a video-based crowd density analysis and prediction system for wide-area surveillance applications. In monocular image sequences, the Accumulated Mosaic Image Difference (AMID) method is applied to extract crowd areas having irregular motion. The specific number of persons and velocity of a crowd can be adequately estimated by our system from the density of crowded areas. Using a multi-camera network, we can obtain predictions of a crowd's density several minutes in advance. The system has been used in real applications, and numerous experiments conducted in real scenes (station, park, plaza) demonstrate the effectiveness and robustness of the proposed method.
出处 《China Communications》 SCIE CSCD 2013年第5期79-88,共10页 中国通信(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No. 61175007 the National Key Technologies R&D Program under Grant No. 2012BAH07B01 the National Key Basic Research Program of China (973 Program) under Grant No. 2012CB316302
关键词 crowd density estimation prediction system AMID visual surveillance 人群密度 预测系统 密度估计 广域 视频 不规则运动 视觉监控 密度分析
  • 相关文献

参考文献23

  • 1ZHAN Beibei, MONEKOSSO D N, REMAGN- INO P, et al. Crowd Analysis: A Survey[J]. Ma- chine Vision and Applications, 2008, 19(5-6): 345-357. 被引量:1
  • 2XU Liqun, ANJULAN A. Crowd Behaviors Analysis in Dynamic Visual Scenes of Complex Environment[C]//Proceedings of the 15th IEEE International Conference on Image Proces-sing, 2008 (ICIP 2008): October 12-15, 2008. San Diego, CA, USA, 2008: 9-12. 被引量:1
  • 3GUO Jinnian, WU Xinyu, CAO Tian, et al. Crowd Density Estimation Via Markov Random Field (MRF)[C]// Proceedings of 2010 8th World Congress on Intelligent Control and Automa- tion (WCICA): July 7-9, 2010. Jinan, China, 2010: 258-263. 被引量:1
  • 4MA Ruihua, LI Liyuan, HUANG Weimin, et al. On Pixel Count Based Crowd Density Estima- tion for Visual Surveillance[C]// Proceedings of 2004 IEEE Conference on Cybernetics and Intelligent Systems: December 1-3, 2004. Sin- gapore, 2004: 170-173. 被引量:1
  • 5PARAGIOS N, RAMESH V. A MRF Based Ap- proach for Real-Time Subway Monitoring[C]// Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition: December 8-14, 2001. Kauai, HI, USA, 2001: 1034-1040. 被引量:1
  • 6LIN S F, CHEN J Y, CHAO H X. Estimation of Number of People in Crowded Scenes Using Perspective Transformation[J]. IEEE Transac- tions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2001, 31(6): 645-654. 被引量:1
  • 7SUBBURAMAN V B, DESCAMPS A, CARIN- COTTE C. Counting People in the Crowd Using a Generic Head Detector[C]// Proceedings of 2012 IEEE 9th International Conference on Adv- anced Video and Signal-Based Surveillance (AVSS): September 18-21, 2012. Beijing, China 2012: 470-475. 被引量:1
  • 8WU Xinyu, LIANG Guoyuan, LEE K K, et al. Crowd Density Estimation Using Texture Ana- lysis and Learning[C]//Proceedings of IEEE Int- ernational Conference on Robotics and Bio- mimetics, 2006 (ROBIO'06): December 17-20, 2006. Kunming, China, 2006: 214-219. 被引量:1
  • 9DOLLAR R TU Zhuowen, PERONA R et al.In- tegral Channel Features[C]// Proceedings of 2009 British Machine Vision Conference: Sep- tember 7-10, 2009. Rama Chellappa, UK, 2009 1-11. 被引量:1
  • 10BROSTOW G J, CIPOLLA R. Unsupervised Baye- sian Detection of Independent Motion in Cro- wds[C]// Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06): June 17-22, 2006. New York, NY, USA, 2006: 594-601. 被引量:1

同被引文献53

  • 1张超,刘亮.无线视频监控系统在海外社会安全管理工作中的应用[J].中国安全生产科学技术,2019,15(S02):58-60. 被引量:3
  • 2赖晨曦,付蔚霞,王海江,李琴,吴秀芸.基于林火强度分析的森林防火监测点选址[J].测绘通报,2021(S02):267-270. 被引量:2
  • 3MARANA A, VELASTIN S, COSTA L, et al. Auto- matic Estimation of Crowd Density using Tex- ture[J]. Safety Science 1998, 28(3): 165-175. 被引量:1
  • 4ZHAN B, MONEKOSSO D, REMAGNINO P, et aL Crowd Analysis: a Survey[J]. Machine Vision and Applications, 2008, 19(5): 345-357. 被引量:1
  • 5DAVIES A, YIN J, VELASTIN S. Crowd Monitoring using Image Processing[J]. Electronics & Com- munication Engineering Journal, 1995, 7(1): 37- 47. 被引量:1
  • 6MA Ruihua., LI Liyuan., HUANG Weimin, et aL On Pixel Count Based Crowd Density Estimation for Visual Surveillance[C]//IEEE Conference on Cybernetics and Intelligent Systems. Singapore: IEEE Press. 2004: 170-173. 被引量:1
  • 7CHAN A, JOHN Z, VASCONCELOS L. Privacy Preserving Crowd Monitoring: Counting People Without People Models or Tracking[C]// IEEE Computer Society Conference on Computer Vi- sion and Pattern Recognition. Alaska, USA: IEEE Press, 2008: 1-7. 被引量:1
  • 8HUSSAIN N, YATIM H, HUSSAIN N L, et al. CDES: A PixeI-Based Crowd Density Estimation System for Masjid aI-Haram[J]. Safety Science, 2011, 49(6): 824-833. 被引量:1
  • 9LIN S, CHEN J, CHAO H. Estimation of Number of People in Crowded Scenes using Perspective Transformation[J]. IEEE Transactions Systems, Man and Cybernetics, Part A: Systems and Hu- mans, 2001, 31(6): 645-654. 被引量:1
  • 10ZHAO T, NEVATIA R. Bayesian Human Segmen- tation in Crowded Situations[C]//IEEE Comput- er Society Conference on Computer Vision and Pattern Recognition. Wisconsin, USA: IEEE Press,2003:459-466. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部