期刊文献+

用于视觉词语生成的概率预测器

Probabilistic predictor for fast visual word generation
原文传递
导出
摘要 视觉词语的产生是基于字袋模型的图像检索中的重要一环:根据已知的视觉词典,查询图像特征被映射到词典中相应的视觉词语。提出一种新的基于空间相关性的快速视觉词语产生算法。统计视觉词典中任意两个词语在数据库中的共生次数,构建视觉词语共生表。利用共生表,建立一种新的概率预测器来辅助预测已知词语的近邻词语。将预测器与快速近似最近邻查找算法结合,在标准图像检索数据库上进行实验测试,相比较传统的树形搜索算法或哈希算法,新算法在时间效率上获得明显提高。 Visual word generation is a key observation in obtaining the bag-of-visual-words (BOVW) representation fin. image retrieval: query image feaures are mapped to their' visual words according to the pre-elustered codebook. In this paper, we propose a novel generation approach based on the spatial correlation of visual words. A visual word cn-oeeurrence table is constructed in the first step. Given the known visual words, a new probabilistic predictor is then presented to acce-lerate the generation of their" neighboring visual words. We combine the co-occurrence table with the fast libral7 for apprnxi-mate nearest neighbors (FLANN) , and test it on the Oxford dataset. Comparisons with representative approaches suggest the efficiency and effectiveness of the new scheme.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第6期706-710,共5页 Journal of Image and Graphics
基金 国家重点基础研究发展计划(973)基金项目(2011CB302400) 国家自然科学基金项目(60975014 61121002) 北京市自然科学基金项目(4102024) 深圳基础研究课题(JCYJ20120614152136201)
关键词 字袋模型 空间相关性 视觉词语共生表 概率预测器 bag-of-visual-words (BOVW) spatial correlation visual word co-occurrence table probabilistic predictor
  • 相关文献

参考文献12

  • 1Beis J, Lowe D. Shape indexing using approximate nearest neigh- bor search in high-dimensional spaces[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Puerto Rico: IEEE Computer Society, 1997: 1000-1006. 被引量:1
  • 2Aly M, Munich M, Perona P. Distributed kd-trees for retrieval from very large image collections [ C ]//Proceedings of the 22nd British Machine Vision Conference. Dundee, UK: BMVA, 2011. 被引量:1
  • 3Silpa-Anan C, Hartley C. Optimised kd-trees for fast image descriptor matching [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska: IEEE Computer Society, 2008 : 1-8. 被引量:1
  • 4Liu T, Moore A, Gray A, et al. An investigation of practical ap- proximate nearest neighbor algorithms [ C ]// Proceedings of the 18th Annual Conference on Neural Information Processing Sys- tems. Vancouver, Canada: MIT, 2004: 825-832. 被引量:1
  • 5Nister D, Stewenius H. Scalable recognition with a vocabulary tree[ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Computer Society, 2006 : 2161-2168. 被引量:1
  • 6Muja M, Lowe D. Fast approximate nearest neighbors with auto- matic algorithm configuration [ C ]// Proceedings of IEEE Con- ference on Computer Vision Theory and Applications. Lisbon, Portugal: IEEE Computer Society,2009:331-340. 被引量:1
  • 7Chum O, Philbin J, Zisserman A. Near duplicate image detec- tion: rain-hash and tf-idf weighting [ C]//Proceedings of the 19th British Machine Vision Conference. London, UK: BMVA, 2008 : 493-502. 被引量:1
  • 8Jegou H, Douze M, Schmid C. Exploiting descriptor distances for precise image search [ R]. Paris: National Institute for Research in Computer Science and Control, 2011. 被引量:1
  • 9Song J, Ma Y, Hu F, et al. Scalable image retrieval based on feature forest[ C ]//Proceedings of the 10th Asian Conference on Computer Vision. Queenstown, New Zealand : IEEE Computer Society, 2010:506-515. 被引量:1
  • 10Xu R, Shi M, Geng B, et al. Fast visual word assignment via spatial neighborhood boosting [ C ]// Proceedings of the 19th International Conference on Multimedia and Expo. Barcelona. Spain : IEEE Computer Society, 2011 : 262-270. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部