期刊文献+

Statistical inference for right-censored data with nonignorable missing censoring indicators 被引量:1

Statistical inference for right-censored data with nonignorable missing censoring indicators
原文传递
导出
摘要 We consider the statistical inference for right-censored data when censoring indicators are missing but nonignorable, and propose an adjusted imputation product-limit estimator. The proposed estimator is shown to be consistent and converges to a Gaussian process. Furthermore, we develop an empirical processbased testing method to check the MAR (missing at random) mechanism, and establish asymptotic properties for the proposed test statistic. To determine the critical value of the test, a consistent model-based bootstrap method is suggested. We conduct simulation studies to evaluate the numerical performance of the proposed method and compare it with existing methods. We also analyze a real data set from a breast cancer study for an illustration. We consider the statistical inference for right-censored data when censoring indicators are missing but nonignorable, and propose an adjusted imputation product-limit estimator. The proposed estimator is shown to be consistent and converges to a Gaussian process. Furthermore, we develop an empirical process- based testing method to check the MAR (missing at random) mechanism, and establish asymptotic properties for the proposed test statistic. To determine the critical value of the test, a consistent model-based bootstrap method is suggested. We conduct simulation studies to evaluate the numerical performance of the proposed method and compare it with existing methods. We also analyze a real data set from a breast cancer study for an illustration.
出处 《Science China Mathematics》 SCIE 2013年第6期1263-1278,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 10901162 and 10926073) China Postdoctoral Science Foundation and Foundation of the Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences supported by National Natural Science Foundation of China (Grant Nos. 10971007 and 11101015) the fund from the government of Beijing (Grant No. 2011D005015000007) supported by National Science Foundation of US (Grant Nos. DMS0806097 and DMS1007167)
关键词 MAR mechanism testing nonignorable missing censoring indicators survival function QUASI-LIKELIHOOD 右删失数据 统计推断 审查 测试方法 高斯过程 经验过程 测试统计 渐近性质
  • 相关文献

参考文献15

  • 1Cheng P E. Nonparametric estimation of mean functionals with data missing at random. J Amer Statist Assoc, 1994, 89:81-87. 被引量:1
  • 2Dikta G. On semiparametric random censorship models. J Statist Plann Inference, 1998, 66:253-2?9. 被引量:1
  • 3Fan J, Gijbels I. Local Polynomial Modelling and its Applications. London: Chapman & Hall, 1996. 被引量:1
  • 4Foutz R V. On the unique consistent solution to the likelihood equations. J Amer Statist Assoc, 1977, 72:147-148. 被引量:1
  • 5Gao G, Tsiatis A A. Semiparametric estimators for the regression coefiocients in the flnear transformation competing risks model with missing cause of failure. Biometrika, 2005, 92:875-891. 被引量:1
  • 6Goetghebeur E, Ryan L. Analysis of competing risks survival data when some failure types are missing. Biometrika, 1995, 82:821-833. 被引量:1
  • 7Kaplan E L, Meier P. Nonparametric estimation from incomplete observatiois. J Amer Statist Assoc, 1958, 53: 457-481. 被引量:1
  • 8Lo S H, Singh K. The product-limit estimator and the bootstrap: Some asymptotic representations, Probab Theory Related Fields, 1986, 71:455-465. 被引量:1
  • 9Lo S H. Estimating a survival function with incomplete cause-of-death data. J Multivariate Anal, 1991, 39:217-235. 被引量:1
  • 10Lu W, Tsiatis A A. Semiparametric transformation models for the case-cohort study. Biometrika, 2006, 93:207-214. 被引量:1

同被引文献15

  • 1Little R J A, Rubin D B. Statistical analysis with missing data [M]. 2nd ed. New York: John Wiley & Sons, 2002. 被引量:1
  • 2Lu K, Tsiatis A A. Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure [ J ]. Biometrics, 2001, 57 (4) : 1 191-1 197. 被引量:1
  • 3Wang Q, Linton O, Hardle W. Semiparametfic regression analysis with missing response at random [ J]. Journal of the American Statistical Association, 2004, 99 (466) : 334-345. 被引量:1
  • 4Sun Z, Wang Q. Semiparamctric estimation of survival function with cause of death data missing at random [J]. Journal of Applied Probability and Statistics, 2007, 2 : 189- 209. 被引量:1
  • 5Zhou X, Sun L. Additive hazards regression with missing censoring information [ J ]. Statistica Sinica, 2003, 13 (4) : 1 237-1 257. 被引量:1
  • 6Wang Q, Ng K W. Asymptotically efficient product-limit estimators with censoring indicators missing at random [ J ]. Statistica Siniea, 2008, 18 ( 2 ) :749-768. 被引量:1
  • 7Wang Q, Dinse G E. Linear regression analysis of survival data with missing censoring indicators [ J ]. Lifetime Data Analysis, 2011, 17(2) :256-279. 被引量:1
  • 8Lin D Y, Ying Z. Semiparametric analysis of the additive risk model[ J]. Biometrika, 1994, 81 ( 1 ) : 61-71. 被引量:1
  • 9Yin G, Cai J. Additive hazards model with multivariate failure time data[ J]. Biometrika, 2004, 91 (4) : 801-818. 被引量:1
  • 10Lu W, Liang Y. Analysis of competing risks data with missing cause of failure under additive hazards model [ J ]. Statistica Sinica, 2008, 18(1): 219. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部