期刊文献+

大型侧进式搅拌釜内湍流流场的数值模拟 被引量:5

Numerical simulation of turbulent flow field in industrial-scale side-entering stirred tank
下载PDF
导出
摘要 采用计算流体力学(CFD)技术对直径和高度均为13 m的大型侧进式搅拌釜内均相宏观流场进行数值计算。结果表明,将计算域划分为大约90万网格时,计算得到的搅拌功率曲线与实验数据吻合较好;考察不同操作转速、搅拌桨安装角度及个数对釜内低速死区分布的影响,发现增大搅拌转速很难有效地消除水平面上的死区;搅拌桨垂直向下5.71°或水平偏转11°安装能明显改善流体运动。三桨和四桨搅拌体系对釜上部流场的优化要好于两桨体系;但在相同转速下,双桨、三桨和四桨搅拌釜的搅拌功耗分别是单桨搅拌釜的1.2倍、2.3倍和3.4倍。综合考虑,三桨体系搅拌效率较高。最后采用组分模型计算得到不同转速下三桨釜的混合时间。 Computational Fluid dynamics (CFD) technique was employed to simulate the single-phase turbulent flow field in an industrial-scale stirred tank equipped with a side-entering impeller. The calculated power curve and velocity profiles were in good agreement with the available experimental results for the finer-mesh cases with 900,000 grids in the calculation domain. The effect of impeller rotation speed and impeller layout on the mixing effect was studied. The results indicate that the increasing of impeller speed can not effectively eliminate the low- velocity dead zones, and the flow pattern can be obviously improved when the impeller is inserted into the tank with a vertical angle of 5.71° or a horizontal angle of 11°. Compared with two-impeller stirred system, the three-and four-impeller systems can more obviously decrease the area of low-velocity dead zones, especially in the top part of the tank. But the total power consumption of two-, three- and four-impeller stirred tank is 1.2, 2.3 and 3.4 times that of the single-impeller stirred tank. The mixing time of a three-impeller stirred tank under the different impeller speeds was calculated by using species model.
作者 陈佳 肖文德
出处 《化学工程》 CAS CSCD 北大核心 2013年第8期38-42,70,共6页 Chemical Engineering(China)
关键词 侧进式搅拌 CFD模拟 低速死区 多桨混合 混合时间 side-entering stirred tank CFD simulation low-velocity zone multi-impeller mixing mixing time
  • 相关文献

参考文献9

  • 1ASGHAR A D, MASOUD R. CFD simulation of homoge- nization in large-scale crude oil storage tanks[ J]. Journal of Petroleum Science and Engineering, 2004, 43 ( 3/4 ) : 151-161. 被引量:1
  • 2方键,桑芝富,杨全保.侧进式搅拌器三维流场的数值模拟[J].石油机械,2009,37(1):30-34. 被引量:21
  • 3BATCHELOR G K. An introduction to fluid dynamics [M]. Cambridge: Cambridge Univ Press, 1967. 被引量:1
  • 4RANADE V V, BOURNE J R, JOSHI J B. Fluid me- chanics and blending in agitated tanks [ J ]. Chemical Engineering Science, 1991, 46 (8) : 1883-1893. 被引量:1
  • 5DOORMAAL J P V, RAITHBY G D. Enhancements of the SIMPLE method for predicting incompressible fluid flow [ J ]. Numerical Heat Transfer, 1984,7 (2) : 147-163. 被引量:1
  • 6OCHIENG A, 0NYANGO M S. CFD simulation of the hydrodynamics and mixing time in a stirred tank [ J ].Chemical Industry & Chemical Engineering Quarterly, 2010, 16(4) : 379-386. 被引量:1
  • 7周国忠,王英琛,施力田.用CFD研究搅拌槽内的混合过程[J].化工学报,2003,54(7):886-890. 被引量:82
  • 8EIN-MOZAFFARI F,UPRETI S R. Using ultrasonic doppler velocimetry and CFD modeling to investigate the mixing of non-newtonian fluids possessing yield stress [ J ]. Chemical Engineering Research and Design,2009,87(4) :515-523. 被引量:1
  • 9蔡晓君,吴立志.侧插式搅拌器结构探讨[J].石油化工设备,2001,30(B05):45-46. 被引量:11

二级参考文献21

  • 1Ranade V V. An efficient computational model for simulating flow in stirred vessels: a case of Rushton turbine [ J]. Chemical Engineering Science, 1997, 52 (24) : 4473 - 4484. 被引量:1
  • 2Montante G, Lee K C, Brucato A, et al. Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vesseds [ J ] . Chemical Engineering Science, 2001, 56 (12): 3751-3770. 被引量:1
  • 3Mingzhong L, Graeme W, Derek Wilkinson, et al. Scale up study of retreat curve impeller stirred tanks using LDA measurements and CFD simulation [ J ] . Chemical Engineering Science, 2005, 108 (1 -2) : 81 -90. 被引量:1
  • 4Asghar A D, Masoud R. CFD simulation of homogenization in large - scale crude oil storage tanks [ J ] . Journal of Petroleum Science and Engineering, 2004, 43 (3 - 4) : 151 -161. 被引量:1
  • 5Salwan S, Farhad E M, Simant R U. Using computational fluid dynamics modeling and ultrasonic doppler velocimetry to study pulp suspension mixing [J] . Department of Chemical Engineering, 2007, 46 ( 7 ) : 2172 -2179. 被引量:1
  • 6Ranade V V, Bourne J R, Joshi J B. Fluid mechanics and blending in stirred tanks [ J ] . Chemical Engineering Science, 1991, 46: 1883-1893. 被引量:1
  • 7Launder B E, Spalding D B. The numerical computation of turbulent flows [ J] . Computer Methods in Applied Mechanics and Engineering, 1974, 3 : 269 - 289. 被引量:1
  • 8Wang Kai(王凯).Mixing Equipment Design(混合设备设计).Beijing:Mechanical Industry Press,2000. 被引量:1
  • 9Noorman H, Morud K, Hjertager B H, Tragardh C, Larsson G, Enfors S O. CFD Modeling and Verification of Flow and Conversion in a 1 m^3 Bioreactor. In: Proc. 3rd Int. Conf.Bioreactor and Bioprocessing Fluid Dynamics. Cambridge:1993. 241--258. 被引量:1
  • 10Lunden M, Stenberg O, Andersson B. Evaluation of a Method of Measuring Mixing Time Using Numerical Simulation and Experimental Data. Chem. Eng. Commun. 1995, 139:115--136. 被引量:1

共引文献105

同被引文献48

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部