期刊文献+

基于像素层标识点的双边滤波快速实现 被引量:1

Fast Implementation of Bilateral Filtering with Identification Point in Pixel Layer
下载PDF
导出
摘要 双边滤波能在去除噪声的同时有效地保留图像的边缘信息。但双边滤波的时间复杂度高,执行时间长。根据近似层和亮度分层的概念,利用标识点及像素层来快速实现双边滤波。首先根据灰度差值划分图像的像素层,然后在像素层上选择标识点,并利用标识点计算像素层的滤波值,最后通过线性插值获得各像素点的滤波值,并输出滤波图像。该改进算法称为标识点双边滤波(Identification Bilateral Filtering)。在实验中分别对灰度和彩色图像进行了双边滤波。实验结果表明,IBF算法执行时间短,并能获得较好的滤波效果。 Bilateral filtering is a technique to delete images noise while effectively preserving edges. The na'fve imple- mentation of the bilateral filtering can be extremely slow. The time complexity is high. According to concepts of appro- ximate layer and intensity layer, a improved bilateral filtering was proposed. This improved algorithm uses identification and pixel layer to realize Bilateral Filtering. This improved algorithm is called identification Bilateral Filtering(IBF). At first, the pixel layer with gray D-value was specified, then identification point in pixel layer was choosen, and the filte- ring value of every pixel layers with identification point was computed. At last, linear interpolation was used to compute filtering value of pixels and output filtered image. Gray image and color image were taken as research objects in experi- ment. Experiment results show that the IBF algorithm has short executing time and has a good filtering result.
出处 《计算机科学》 CSCD 北大核心 2013年第7期262-265,共4页 Computer Science
基金 国家自然科学基金项目(61104179) 山东省教育厅资助项目(J11LG02 J10LG67) 聊城大学自然科学基金(X09031) 山东省高校智能信息处理与网络安全重点实验室项目资助
关键词 双边滤波 像素层 标识点 欧氏距离 Bilateral filtering, Pixel layer, Identification point, Euclidean distance
  • 相关文献

参考文献13

  • 1Overton K J, Weymouth T E. A noise reducing preprocessing al- gorithm[A]// Proceedings of IEEE (kmputer Science Confe- rence on Pattern Recognition and Image Processing[C]. Chica-go, Illinois, USA, 1979 : 498-507. 被引量:1
  • 2Pharn T Q, van Vliet L J. Separable bilateral filtering for fast video preprocessing[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. 2005. 被引量:1
  • 3Weiss B. Fast median and bflateral filtering[J]. ACM Transacl I tions on Graphics,2006,25(3):519-526. 被引量:1
  • 4Durand F, Dorsey J. Fast bilateral filtering for the display of high-dynamic-range images [J]. ACM Transactions on Grap- hics, 2002,21 (3) : 257-266. 被引量:1
  • 5Pairs S,Durand F. A fast approximation of the bilateral filter u-I sing a signal processing approachrJ]. International Journal oH Computer Vision, 2009,81 (1) : 24-52. 被引量:1
  • 6Fattal R, Agrawala M, Rusinkiewicz S. Multiscale shape and de- tail enhancement from multi-light image collections [J]. ACM Transactions on Graphics, 2007,26 (3) : 51. 被引量:1
  • 7李凡,刘上乾,秦翰林.自适应双边滤波红外弱小目标检测方法[J].光子学报,2010,39(6):1129-1131. 被引量:15
  • 8Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoisin4g [ C ] //Proc. ACM SIGGRAPH. San Diego,CA,July 2003:950-953. 被引量:1
  • 9Jones T R,Durand F,Desbrun M. Non-iterative feature-preser- ving mesh smoothing[C]//Proc ACM SIGGRAPH. San Diego, CA,July 2003 : 943-949. 被引量:1
  • 10Xiao J, Cheng H, Sawhney H, et al. Bilateral filtering-based opti- cal flow estimation with occlusion detection[C]//Proc. Euro- pean Conference on Computer Vision. Vol. 1, Graz, Austria, May 2006 : 211-224. 被引量:1

二级参考文献6

共引文献14

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部