期刊文献+

面向移动阅读平台的资源推荐算法 被引量:1

Resources Recommendation Algorithm Oriented to Mobile Reading Platform
下载PDF
导出
摘要 随着移动计算技术的发展,人们可以在移动环境中方便地在线获取阅读资源,但如何在海量资源中检索出符合用户兴趣的内容,成为亟需解决的问题。为此,提出一种面向移动阅读平台的资源推荐算法。根据用户的知识结构和用户之间的交互记录进行建模,计算用户相似度以获取相似用户,利用最近邻集合结合协同过滤算法进行资源推荐。在系统平台上进行测试,该算法的绝对误差平均值为0.636,低于同类推荐系统的平均水平,表明推荐算法是有效的。 The development of mobile computing technology makes people able to get online reading resources in a mobile environment.It is becoming a problem how to retrieve contents matching users’ interest from massive resources,therefore,a resources recommendation algorithm oriented mobile reading platform is proposed.The algorithm applies the feature of users’ knowledge structure and social intercommunication records into the calculation of similarity between users to get the nearest-neighbor set of the collaborative filtering method.Test result on the system platform shows that absolute error average value of the proposed algorithm is 0.636,it is lower than average level of recommendation system,the recommendation algorithm is effective.
出处 《计算机工程》 CAS CSCD 2013年第8期69-73,共5页 Computer Engineering
基金 国家"863"计划基金资助重点项目(2009AA011906)
关键词 阅读平台 用户相似度 知识结构 交互记录 协同过滤 资源推荐 reading platform user similarity knowledge structure interaction records collaborative filtering resources recommendation
  • 相关文献

参考文献10

  • 1Yu Shengquan,Yang Xianmin,Cheng Gang.Research on theOrganization Model of Ubiquitous Learning Resource——TheStructure of Learning Cell and Its Runtime Environment[C]//Proc.of International Conference on Computer-supportedCollaborative Learning.Hong Kong,China:[s.n.].2011. 被引量:1
  • 2刘军,邱勤,余胜泉,希建华.无缝学习空间的技术、资源与学习创新--2011年第十届mLearn世界会议述评[J].开放教育研究,2011,17(6):8-19. 被引量:28
  • 3Sun Jianbin,Zhang Pengzhu.Visualization of Researcher’sKnowledge Structure Based on Knowledge Network[C]//Proc.of International Congress of Inborn Errors of Metabolism.San Diego,USA:SIMD Press,2009. 被引量:1
  • 4Canas A J,Carff R,Hill G,et al.Concept Maps:IntegratingKnowledge and Information Visualization[C]//Proc.ofKnowledge and Information Visualization Conference.[S.1.]:Springer-Verlag,2005,3426:205-219. 被引量:1
  • 5Lin Xia,Bui Yen.Visualization of Knowledge Structures[C]//Proc.of IEEE International Conference on InformationVisualization.Sacramento,USA:IEEE Press,2007. 被引量:1
  • 6Li Xinmiao,Li Xinhui,Zhang Pengzhu,et al.Study on In-novative Task Oriented Knowledge Structure and the DynamicVisualization[C]//Proc.of International Conference on Wire-less Communications,Networking and Mobile Computing.New York,USA:IEEE Press,2007. 被引量:1
  • 7Adomavicius G,Tuzhhilin A.Toward the Next Generation ofRecommender Systems:A Survey of the State-of-the-art andPossible Extensions[J].IEEE Transaction on Knowledge andData Engineering,2005,17(6):734-749. 被引量:1
  • 8曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 9Su Xiaoyuan,Khoshgoftaar T M.A Survey of CollaborativeFiltering Techniques[C]//Proc.of Advances in ArtificialIntelligence.New York,USA:Hindawl Publishing,2009:421-425. 被引量:1
  • 10Tong Hanghang,Faloutsos C,Pan Jiayu.Fast Random Walkwith Restart and Its Applications[C]//Proc.of InternationalConference on Data Mining.Las Vegas,USA:IEEE Press,2009. 被引量:1

二级参考文献46

  • 1余胜泉,刘军.手持式网络学习系统在学科教学中的应用模式[J].中国远程教育,2007(05S):64-69. 被引量:23
  • 2余胜泉.从知识传递到认知建构、再到情境认知——三代移动学习的发展与展望[J].中国电化教育,2007(6):7-18. 被引量:302
  • 3Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415. 被引量:1
  • 4Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247. 被引量:1
  • 5Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999. 被引量:1
  • 6Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381. 被引量:1
  • 7Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72. 被引量:1
  • 8Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000. 被引量:1
  • 9Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167. 被引量:1
  • 10Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52. 被引量:1

共引文献420

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部