期刊文献+

基于模糊神经网络道路纵向附着系数预测

The Tire-road Coefficient of Friction Prediction Model Based on Fuzzy Neural-network
下载PDF
导出
摘要 为了研究路面状况及使用年限对道路纵向附着系数的影响,通过对不同年限、不同干湿状况的路面进行测试纵向附着系数,建立了基于模糊神经网络道路纵向附着系数预测模型,并通过实车制动试验进行验证。试验结果表明:预测模型误差率小于6%,实车制动试验制动车速与实际车速误差也在6%内,验证了模型的有效性和实用性。因此,为交通事故再现提供了一个快速有效的方法。 in order to research the influence between the tire-road coefficient of friction and road conditions as well as useful life, we build the tire-road coefficient of friction prediction model based on fuzzy neural-network, by the tire-road coefficient of friction test in different conditions. The result by vehicle braking test implies that the modal error ratio is less than 6%, and the real effect is satisfactory. This shows that the validity and practicality of model is verified. Therefore, this model provides a quick and accurate method with accident reconstruction,
机构地区 长安大学
出处 《汽车实用技术》 2013年第7期34-38,共5页 Automobile Applied Technology
关键词 道路纵向附着系数 模糊神经网络 预测模型 交通事故再现 the tire-road coefficient of friction fuzzy neural-network, prediction model accident reconstruction
  • 相关文献

参考文献8

二级参考文献60

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部