期刊文献+

矩阵方程AXB=C的最小二乘解的定秩研究

On the Rank Range of the Least-squares Solutions of the Matrix Equation AXB=C
下载PDF
导出
摘要 研究了矩阵方程AXB=C最小二乘解的秩的范围,利用矩阵的奇异值分解以及Frobenius范数的特征,得到了秩约束下最小二乘解的表达式,并得到了最大秩和最小秩最小二乘解. This paper, we considered the rank range of the least-squares solutions of matrix equation AXB = C. By applying the singular value decomposition of matrix and the properties of Frobenius matrix norm, we have obtained the range of the rank and the least-squares solution expression of under rank con- strained. Finally, we have provided the expressions of the least-squares solutions with maximal and mini- mum rank respectively.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第7期92-94,共3页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(11271117)
关键词 最优控制 最小二乘解 秩约束 奇异值分解 FROBENIUS范数 optimal control least-squares solutions rank constrained SVD decomposition Frobeniusnorm
  • 相关文献

参考文献8

  • 1何旭初,孙文瑜.广义逆矩阵引论[M].南京:江苏科学技术出版社,1992. 被引量:1
  • 2GENE H G,CHARLES F V L, Matrix computations[M]. Third Edition. Baltimore, Maryland:The Johns Hopkins Uni- versity Press, 1996. 被引量:1
  • 3MARSAGLIA G, STYAN G P H. Equalities and inequalities for ranks of matrices[J]. Linear and Multilinear Algebra, 1974,2..269-292. 被引量:1
  • 4WOODGATE K G. Least-square solution of F= PG over posi- tive semidefinite symmetric[J]. Linear Algebra and its Appli- cations, 1996, 145: 171-190. 被引量:1
  • 5ZHANG X, CHENG M Y. The rank-constrained Hermitian nonnegative-definite and positive-define solutions to matrix e- quationAXA * = B [J]. Linear Algebra and its Applications, 2003, 370:163-174. 被引量:1
  • 6XIAOQF, HUX Y, ZHANG L. The symmetric minimal rank solution of the matrix equation AX=B and the optimal approximation[J].Electronic Journal of Linear Algebra, 2009, 18:264-273. 被引量:1
  • 7LIU Yong-hui. Ranks of solutions of the linear matrix equa- tion AX+YB = C[J]. Computers and Mathematics with Ap- plications, 2006, 52: 861-872. 被引量:1
  • 8TIAN Yong-ge. Maximization and minimization of the rank and inertia of the Hermitian matrix expression A - BX - (BX) * with applications[J]. Linear Algebra and its Applica- tions,2011, 434: 2109-2139. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部