期刊文献+

基于协同过滤的Web服务动态社区发现算法

Dynamic community discovery algorithm of Web services based on collaborative filtering
下载PDF
导出
摘要 针对现有社区发现算法挖掘结果精确度不高以及Web服务资源智能推荐质量较低的问题,在传统协同过滤算法的基础上,提出了基于节点相似性的动态社区发现算法。首先以连接节点最多的中心节点为起始网络社区,以社区贡献度为衡量指标不断形成多个全局贡献度饱和的社区;再使用重叠度计算将相似度高的社区进行合并,最后通过计算目标用户与社区中其他用户之间的动态相似度,将计算结果降序排列后构成邻近用户集,获得社区化推荐对象。实验结果表明,提出的社区发现算法对用户社会网络的社区分类与实际社区分类结果吻合,提高了社区挖掘的精确度,有助于实现高质量的社区化推荐。 To cope with the low accuracy of the mining results in the existing community discovery algorithms and the low quality of intelligent recommendation in the Web services resource,on the basis of the conventional collaborative filtering algorithms,a dynamic community discovery algorithm was proposed based on the nodes' similarity.Firstly,the central node that had the most connected nodes was regarded as the initial network community,and the community contribution degree was taken as the metric to continuously form a plurality of global saturated contribution degree communities.Then,an overlapping calculation was used to merge the communities of high similarity.Finally,the calculated results were arranged in descending order to form neighboring user sets for obtaining community recommendation object by calculating the dynamic similarity between target user and other users in the community.The experimental results show that the user social network community classification by the proposed community discovery algorithms is consistent with the real community classification results.The proposed algorithm can improve the accuracy of the community mining and helps to achieve high-quality community recommendation.
出处 《计算机应用》 CSCD 北大核心 2013年第8期2095-2099,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(71072077 71172043) 国家科技支撑计划项目(2011BAH16B02) 教育部留学回国人员科研启动基金资助项目(20101561) 中央高校基本科研业务费专项资金资助项目(2012YB20)
关键词 WEB服务资源 协同过滤 社会网络 重叠社区 社区挖掘 节点相似性 Web service resource collaborative filtering social network overlapping community community mining node similarity
  • 相关文献

参考文献16

  • 1PALLA G, DERENYI I, FARKAS I. Uncovering the overlapping community structures of complex networks in nature and society [ J]. Nature, 2005, 435(7043): 814-818. 被引量:1
  • 2LANCICHINETYI A, FORTUNATO S, KERTESZ J. Detecting the overlapping and hierarchical community structure in complex net- works [J]. New Journal of Physics, 2009, 11(3): 033015. 被引量:1
  • 3JIN D, YANG B, BAQUERO C. A Markov random walk under con- straint for discovering overlapping communities in complex networks [J]. Journal of Statistical Mechanics: Theory and Experiment, 2011:P05031. 被引量:1
  • 4施伟,傅鹤岗,张程.基于连边相似度的重叠社区发现算法研究[J].计算机应用研究,2013,30(1):221-223. 被引量:8
  • 5王刚,钟国祥.基于信息熵的社区发现算法研究[J].计算机科学,2011,38(2):238-240. 被引量:7
  • 6LEE C, REID F, MCDAID A. Detecting highly overlapping com- munity structure by greedy clique expansion [ C]// Proceedings of the 4th International Workshop on Social Network Mining and Analy- sis. New York: ACM, 2010:33-42. 被引量:1
  • 7王松,徐德华.基于产品分类的协同过滤算法应用研究[J].计算机应用与软件,2012,29(4):183-185. 被引量:2
  • 8余肖生,孙珊.基于网络用户信息行为的个性化推荐模型[J].重庆理工大学学报(自然科学),2013,27(1):47-50. 被引量:18
  • 9ZHENG Z B, MA H, LYU M R, et al. QoS-aware Web service rec- ommendation by collaborative filtering [ J]. IEEE Transactions on Services Computing, 2011,4(2) : 140 - 152. 被引量:1
  • 10WU J, CHEN L, FENG Y P, et al. Predicting quality of service for selection by neighborhood-based collaborative filtering [ J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(2): 428-439. 被引量:1

二级参考文献52

  • 1唐敏.关联规则挖掘算法在超市销售分析中的应用[J].计算机科学,2006,33(2):149-150. 被引量:12
  • 2NEWMAN M E J.Detecting community structure in networks[J].European Physical Journal B:Condensed Matter and Complex Systems,2004,38(2):321-330. 被引量:1
  • 3NEWMAN M E J,GIRVAN M.Finding and evaluating community structure in networks[J].Physical Review E:Statistical,Nonlinear,and Soft Matter Physics,2004,69(2):026113. 被引量:1
  • 4BARNA S,LISE G.Group proximity measure for recommending groups in online social networks[C/OL]//SNA-KDD'08:Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2008[2009-05-22].http://www.cs.umd.edu/- bama/snakdd-08.pdf. 被引量:1
  • 5BACKSTROM L,HUITENLOCHER D,KLEINBERGJ,et al.Group formation in large social networks:Membership,growth,and evolution[C]//KDD '06:Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2006:44-54. 被引量:1
  • 6MISHRA N,SCHREIBER R,STANTON I,et al.Clustering the social networks[C]//WAW2007:5th Workshop on Algorithms and Models for the Web-Graph,LNCS 4863.Berlin:Springer-Verlag,2007:56-67. 被引量:1
  • 7MISLOVE A,MARCON M,GUMMADI K P,et al.Measurement and analysis of online social networks[C]//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement.New York:ACM Press,2007:29-42. 被引量:1
  • 8KLEINBERG J,SANDLER M.Using mixture models for collaborative filtering[C]// Proceedings of the 36th Annual ACM Symposium on Theory of Computing.New York:ACM Press,2004:569-578. 被引量:1
  • 9HOFMANN T,PUZICHA J.Latent class models for collaborative filtering[C]// Proceedings of the 16th International Joint Conference on Artificial Intelligence.San Francisco,CA,USA:Morgan Kanfmann Publishers,1999:688-693. 被引量:1
  • 10杨楠,林松祥,高强,孟小峰.一种从马尔可夫聚类簇发现潜在WEB社区特征的方法[J].计算机学报,2007,30(7):1086-1093. 被引量:5

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部