期刊文献+

单李代数上保强交换性的非线性可逆映射和非线性强积零导子 被引量:1

Nonlinear Strong Commutativity Preserving Maps and Nonlinear Strong Product Zero Derivations on Simple Lie Algebras
原文传递
导出
摘要 设L是特征为零的代数封闭域F上的有限维单李代数.如果f:L→L为可逆映射,且满足[f(x),f(y)]=[x,y],对任意的x,y∈L,则称f是L上保强交换性的非线性可逆映射.证明L上保强交换性的可逆映射只能是恒等映射或负恒等映射.若映射δ:L→L满足[δ(x),y]+[x,δ(y)]=0,对任意的x,y∈L,则称δ为L上的非线性强积零导子.证明了单李代数L上非线性强积零导子只能是零映射. Let L be a finite-dimensional simple Lie algebra over an algebrically closed field F of characteristic zero. A nonlinear mapf:L→L is called a strong commutativity preserving map iff is invertible and for anyx,y ∈ L, [f(x) ,f(y) ] = [x,y] . It shows that a strong commutativity preserving map over L is just an identical mapping or negative identical mapping. A nonlinear map δ :L→ L is called a nonlinear strong product zero derivation if for anyx,y → L, [ δ(x), y] + [x,δ(y) ] = 0 . It is shown that a strong product zero derivation is just a zero map.
作者 汪冰 陈正新
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期5-8,共4页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11101084)
关键词 单李代数 非线性映射 保强交换性 非线性强积零导子 simple Lie algebra non-linear invertible map strong commutativity preserving map non-linear strong product zero derivation
  • 相关文献

参考文献14

  • 1Humphreys E. Introduction to Lie algebras and representation theory [ M]. New York: Springer-verlag, 1973. 被引量:1
  • 2Wang Dengyin, Chen Zhengxin. Quasi-automorphisms of Lie algebras [J]. Corn Alg, 2010, 39 (7) : 2388 -2395. 被引量:1
  • 3Wang Dengyin, Chen Zhengxin. Invertible linear maps on simple Lie algebras preserving commutativity [ J ]. Pro Amer MathSoc, 2011, 39:3881-3893. 被引量:1
  • 4CHEN ZHENG-XIN CHEN QIONG.Invertible Linear Maps on the General Linear Lie Algebras Preserving Solvability[J].Communications in Mathematical Research,2012,28(1):26-42. 被引量:1
  • 5Wang Dengyin, Zhao Yanxian, Chen Zhengxin. Nonlinear invertible maps on simple Lie algebras preserving Lie products [J]. ComAlg, 2011, 39: 424-434. 被引量:1
  • 6Liau Paokuei, Huang Weilu, Liu Chengkai. Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution [J]. Lin Alg Appl, 2011, 436 (9) : 3099 -3108. 被引量:1
  • 7Leger G F, Luks E M. Generalized derivations of Lie algebras [J]. J Algebra, 2000 (228) : 165 -203. 被引量:1
  • 8Matej Bresar. Near-derivations in Lie algebra [ J ]. J Algebra, 2008 (320) : 3765 - 3772. 被引量:1
  • 9Li Hailing, Wang Ying. Generalized Lie triple derivations [ J]. Lin Mul Alg, 2011, 59:237 -247. 被引量:1
  • 10Wang Dengyin, Yu Xiaoxiang. Lie triple derivations on the parabolic subalgebras of simple Lie algebras [ J ]. Lin Mul Alg, 2011, 59 : 837 - 840. 被引量:1

二级参考文献12

  • 1Frobenius C. Uber die Darstellung der Endlichen Gruppen Durch Lineare Substitutioen. Berlin: Sitzungsber Deutsch Akad Wiss, 1897. 被引量:1
  • 2Li C K, Tsing N K. Linear preserver problem: a brief introduction and some special techniques. Linear Algebra Appl., 1992, 162-164: 217-235. 被引量:1
  • 3Pierce S, Li C K, Loewy R, Lim M H, Tsing N. A survey of linear preserver problems. Linear and Multilinear Algebra, 1992, 33: 1-129. 被引量:1
  • 4Li C K, Pierce S. Linear preserver problem. Amer. Math. Monthly, 2001, 108: 591-605. 被引量:1
  • 5Marcus M. Linear operations of matrices. Amer. Math. Monthly, 1962, 69: 837-847. 被引量:1
  • 6Marcoux L W, Sourour A R. Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras. Linear Algebra Appl., 1999, 288: 89-104. 被引量:1
  • 7Wong W J. Maps on simple algebras preserving zero products, II: Lie algebras of linear type. Pacific J. Math., 1981, 92: 469-487. 被引量:1
  • 8Semrl P. Non-linear commutativity preserving maps. Acta Sci. Math. (Szeged), 2005, 71: 781- 819. 被引量:1
  • 9Fosner A. Non-linear commutativity preserving maps on M~(R). Linear and Multilinear Alge- bra, 2005, 53: 323-344. 被引量:1
  • 10Semrl P. Commutativity preserving maps. Linear Algebra Appl., 2008, 429: 1051-1070. 被引量:1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部