期刊文献+

虚拟社交网络中节点重要度分析 被引量:11

An Importance Analytical Approach for Online Social Network
下载PDF
导出
摘要 根据虚拟社交网络本身的特性,提出了采用重要度矩阵迭代方法定量分析网络中各节点的重要度.该方法考虑了虚拟社交网络中各节点重要度的相互影响,以及这种影响的传递性.实验结果表明,该方法能有效分析虚拟社交网络中节点重要度,有助于提高社交网络中信息传播分析、舆情分析等工作的效率和准确性. An importance matrix iteration algorithm for online social network importance analysis was proposed based on existing importance analysis algorithms for complex networks,and considering the characteristics of online social networks.This novel approach considers the influence between nodes and has been approved to be efficient and accurate by experiments described in the paper.This paper can help to improve the efficiency and accuracy of the analysis of information propagation and public opinions on the Internet.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第7期1055-1059,共5页 Journal of Shanghai Jiaotong University
基金 国家重点基础研究发展规划(973)项目(2009CB320505) 广东省产学研项目(2010B091000010) 中央高校基本科研业务经费(x2jsD2111270)
关键词 复杂网络 重要度分析 矩阵迭代 PAGERANK算法 complex networks importance analysis matrix iteration PageRank algorithm
  • 相关文献

参考文献20

  • 1Watts D, Strogatz S. Collective dynamics of small world networks[J]. Nature, 1998, 393: 440-442. 被引量:1
  • 2Barabdsi A, Bonabeau E. Scientific American, 2003, Scale free networks [J] 288: 60-69. 被引量:1
  • 3胡海波,王科,徐玲,汪小帆.基于复杂网络理论的在线社会网络分析[J].复杂系统与复杂性科学,2008,5(2):1-14. 被引量:84
  • 4余高辉,杨建梅,曾敏刚.QQ群好友关系的复杂网络研究[J].华南理工大学学报(社会科学版),2011,13(4):20-23. 被引量:9
  • 5Callaway D, Newman J, Strogatz S, Watts D. Net- work robustness and fragility: percolation on random graphs[J]. Physical Review Letters, 2000, 85 (25) : 5468-5471. 被引量:1
  • 6Xia Y, Fan J. Efficient attack strategy to communica- tion networks with partial degree information[C]// Proceedings of 2011 IEEE International Symposium of Circuits and Systems. Rio de Janeiro, Brazil: IEEE Press, 2011: 1588-1591. 被引量:1
  • 7Freeman L C. A set of measures of centrality based upon betweenness[J]. Sociometry, 1977, 40(1): 35-41. 被引量:1
  • 8Wagner C, Roessner J, Bobb K, et al. Approaches to understanding and measuring interdisciplinary sci- entific research (IDR) : A review of the literature[J]. Journal of Informatics, 2011, 5(1) : 14-26. 被引量:1
  • 9Opsahl, T, Agneessens, F, Skvoretz, J . Node cen- trality in weighted networks: Generalizing degree and shortest paths[J]. Social Networks, 2010, 32: 245- 251. 被引量:1
  • 10Lerman K, Ghosh R, Kang J, Centrality Metric for Dynamic Networks [C]//Proceedings of KDD work- shop on Mining and Learning with Graphs (MLG). Washington D C, USA: ACM Press, 2010: 70-77. 被引量:1

二级参考文献119

共引文献231

同被引文献116

引证文献11

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部