期刊文献+

FLDA方法在单样本人脸识别中的应用研究

Research of Face Recognition with FLDA from Single Sample per Person
下载PDF
导出
摘要 在人脸识别应用中,当每个人有多个训练样本(MSPP)时,Fisher线性判别分析(FLDA)方法可以很好地用于特征提取。然而,当每个人只有一个训练样本(SSPP)时,因为类内散布矩阵为零矩阵,所以FLDA方法将不能使用。为了解决该问题,提出了一种比较新颖的方法来估计类内散布矩阵,借助于奇异值分解(SVD)方法,先将人脸图像分解成两部分,然后分别估计出类内散布矩阵及类间散布矩阵,使FLDA方法能够得到有效的应用。在ORL及Yale上的实验表明了提出的方法比现有的许多方法取得了更好的识别效果。 Usually, Fishier Linear Discriminative Analysis (FLDA) can be effective in face recognition when each person has multiple samples (MMSP). However,it will not be used when each person has only one training sample (SSPP) because the intra-class metric is zero. To address this problem ,a novel method to estimate the intra-class scatter metric is proposed. By using the Singular Value Decomposition (SVD) ,firstly, face image is decomposed into two parts,and then they are used to estimate intra-class and inter-class scatter metrics,which making the traditional FLDA can be applied to SSPP task. Experiments on the ORL and Yale face database show that the proposed method can achieve better recognition accuracy than many common solutions to the SSPP problem.
出处 《电视技术》 北大核心 2013年第15期181-184,共4页 Video Engineering
关键词 单训练样本每人 奇异值分解 FISHER线性判别分析 face recognition single training sample per person singular value decomposition fishier linear discriminative analysis
  • 相关文献

参考文献8

  • 1HEERING A,ROSSION B,MAURER D. Developmental changes in face recognition during childhood: evidence from upright and inverted faces [ J ]. Cognitive Development,2012,27 ( 1 ) : 17-27. 被引量:1
  • 2GUILLAUMIN M, MENSINK T, VERBEEK J, et al. Face recognition from caption - based supervision [ J ]. International Journal of Computer Vision ,2012,96 ( 1 ) :64-82. 被引量:1
  • 3ARANDJELOVIC O. Computationally efficient application of the generic shape- illumination invariant to face recognition from video [ J ]. Pattern Recognition,2012,45 ( 1 ) :92-103. 被引量:1
  • 4ZHANG Z, WANG J, ZHA H. Adaptive manifold learning [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34( 1 ) : 131-137. 被引量:1
  • 5CONNOI_JLY J F, GRANGER E, SABOURIN R. An adaptive classifica- tion system for video - based face recognition [ J ]. Information Science, 2012,192( 1 ) :50-70. 被引量:1
  • 6GIE Z, LIU G,FANG Z. Face recognition based on combination of human perception mad local binary pattern [ J ]. Lecture Notes in Computer Sci- ence, 2012,72 ( 2 ) : 365 -373. 被引量:1
  • 7CHEN S, LIU J, ZHOU Z. Making FLDA applicable to face recognition with one sample per person [ J ]. Pattern Recognition,2004,37 ( 7 ) : 1553- 1555. 被引量:1
  • 8HAFIA F, SHAFIE A A, MUSTAFAH Y M. Face recognition from single sample per person by learning of generic discriminant vectors [ J ]. Proce- dia Engineering,2012(45) :465-472. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部