期刊文献+

一种基于混合策略的推荐系统托攻击检测方法 被引量:1

A shilling attacks detection method of recommender systems based on hybrid strategies
下载PDF
导出
摘要 推荐系统托攻击检测面临数据不均衡和代价敏感两个问题,但目前的检测方法缺乏同时对这两个问题的研究。提出了一种基于重采样和代价敏感支持向量机相结合的托攻击检测新方法。该方法首先利用基于样本重要性的欠采样技术实现训练样本的均衡,重构过程中根据边界样本对分类支持的重要性的不同加以处理,在消除大量噪声样本的同时保留了绝大多数对分类学习有用的样本;然后引入代价敏感支持向量机对重构后的样本集进行训练,最终得到系统决策函数。实验结果表明,本方法能提高对托攻击的检测精度,具有较强的推广意义。 Detecting shilling attacks for recommender systems is necessary to solve problems such as imbalanced dataset and cost sensitive, but existing methods are lack of relative studies. This paper pro- pose a new attack detection method, which combines the methods of under-sampling and cost-sensitive support vector machine together. Firstly, according to the different importance for classification to process, the training dataset is balanced by sample importance based under-sampling technique, for the sake of eliminating a lot of noise samples while retaining the most of useful samples. Secondly, cost-sen- sitive support vector machine is conducted to train the reconstructed dataset. Finally, the detection deci- sion function is obtained. Experimental results show that the proposed method can improve the accuracy of detecting shilling attacks and has a strong generality.
出处 《计算机工程与科学》 CSCD 北大核心 2013年第8期174-179,共6页 Computer Engineering & Science
基金 国家社会科学基金青年项目(11CJY008) 辽宁省社会科学规划基金项目(L10BJL026) 中央高校专项科研基金(DUT10RW302)
关键词 推荐系统 托攻击 不均衡数据集 代价敏感学习 欠采样 支持向量机 recommender systeml shilling attack unbalanced data cost-sensitive learning under-sampling support vector machine
  • 相关文献

参考文献14

  • 1Mehta B, Hofmann T. A survey of attack-resistant collabora- tive filtering algorithms [J]. Data Engineering Bulletin,2008,31(2):14-22. 被引量:1
  • 2Lain S K,Riedl J. Shilling recommender systems for fun and profit[C]//Proc of the 13th International Conference on World Wide Web, 2004 : 393-402. 被引量:1
  • 3O' Mahony M, Hurley N J, Kushmerick N, et al. Collabora- tive reeommendation: A robustness analysis[J]. ACM Trans- actions on Internet Technology, 2004,4 (4) : 344-377. 被引量:1
  • 4Vapnik V N. Statistical learning theory[ M]. USA : Wiley, 1998. 被引量:1
  • 5Williams C A,Mobasher B,Burke R. Defending recommen- der systems : Detection of profile injection attacks[J]. Service Oriented Computing and Applications, 2007,1 (3) : 157-170. 被引量:1
  • 6李聪,骆志刚,石金龙.一种探测推荐系统托攻击的无监督算法[J].自动化学报,2011,37(2):160-167. 被引量:22
  • 7Bhaumik R, Williams C, Mobasher B, et al. Securing collab- orative filtering against malicious attacks through anomaly detection[C] //Proc of the 4th Workshop on Intelligent Techniques for Web Personalization (ITWP'06), 2006:1. 被引量:1
  • 8Weiss G M. Mining with rarity:A unifying framework[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1):7-19. 被引量:1
  • 9Liao T W. Classification of weld flaws with imbalanced class data[J]. Expert Systems with Applications, 2008, 35 (3) : 1041-1052. 被引量:1
  • 10郑恩辉,李平,宋执环.代价敏感支持向量机[J].控制与决策,2006,21(4):473-476. 被引量:33

二级参考文献26

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extension. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749. 被引量:1
  • 2Li Q, Kim B M. Constructing user profiles for collaborative recommender system. In: Proceedings of the 6th Asia Pacific Web Conference. Hangzhou, China: Springer, 2004. 100--110. 被引量:1
  • 3Herlocker J L, Konstan J A, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 1999. 230-237. 被引量:1
  • 4Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE InteI1igent Systems, 2007, 22(3): 56-63. 被引量:1
  • 5Burke R, Mobasher B, Zabicki R, Bhaumik R. Identifying attack models for secure recommendation. In: Proceedings of the Beyond Personalization Workshop on the International Conference on Intelligent User Interfaces. San Diego, USA: ACM Press, 2005. 347-361. 被引量:1
  • 6Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402. 被引量:1
  • 7O'Mahony M, Hurley N J, Kushmerick N, Silvestre G. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology, 2004, 4(4): 344-377. 被引量:1
  • 8Burke R, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2006. 542-547. 被引量:1
  • 9Moba-her B, Burke R, Bhaumik R, Williams C. Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness. ACM Transactions on lnternet Technology, 2007, T(4): 1-38. 被引量:1
  • 10Burke R, Mobasher B, Bhaumik R, Williams C. Segment- based injection attacks against collaborative filtering recommender systems. In: Proceedings of the 5th IEEE International Conference on Data Mining. Washington D. C., USA: IEEE, 2005. 577-580. 被引量:1

共引文献52

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部