期刊文献+

变步长稀疏自适应的迭代硬阈值图像重构 被引量:4

Variable step size sparsity adaptive iterative hard thresholding image reconstruction
下载PDF
导出
摘要 针对压缩感知理论中迭代硬阈值IHT重构算法要求给定信号稀疏度的缺点,提出了一种变步长稀疏自适应迭代硬阈值VSSSAIHT算法。该算法在信号的稀疏度未知的情况下,通过相邻迭代残差的差值大小来选择合适的步长,以扩大重构信号的支撑集,不断逼近原始信号的稀疏度,逐步迭代恢复信号。仿真结果表明,与迭代硬阈值算法相比,VSSSAIHT算法改善了图像重构的质量,减少了算法运行的时间。 Aiming at the shortcomings that iterative hard thresholding(IHT)reconstruction algorithm of compressed sensing theory requires the sparsity of original signal is known, a variable step size sparsi- ty adaptive iterative hard thresholding(VSSSAIHT)algorithm was proposed. When the sparsity of origi- nal signal is unknown, the proposed algorithm according to the differences between adjacent residuals chooses appropriate step size to increase the number of support set of the reconstructed signal, approxi- mate the sparsity of original signal gradually and restore signals by gradual iterations. Simulation results show that the VSSSAIHT algorithm, compared with the IHT algorithm, improves the quality of the re- constructed image, and reduces running time.
出处 《计算机工程与科学》 CSCD 北大核心 2013年第8期120-124,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60872064)
关键词 压缩感知 迭代硬阈值 图像重构 变步长 稀疏自适应 compressed sensing iterative hard thresholding image reconstruction variable step size sparsity adaptive
  • 相关文献

参考文献15

  • 1Donoho D. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306. 被引量:1
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2) :489-509. 被引量:1
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:709
  • 4Tropp J, Gilbert A. Signal recovery from random measure- ments via orthogonal matching pursuit [J]. IEEE Transac- tions on Information Theory, 2007, 53(12) :4655-4666. 被引量:1
  • 5Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. IEEE Journal of Selected Topics in Signal Pro- cessing, 2010, 4(2):310-316. 被引量:1
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposi- tion by basis pursuit[J]. SIAM Journal on Scientific Compu- ting(S1064-8275), 1999, 20(1) :33-61. 被引量:1
  • 7Figueiredo M, Nowak R, Wright S. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4) :586-597. 被引量:1
  • 8Qiu K, Dogandzic A. Double overrelaxation thresholding meth- ods for sparse signal reconstruction[C]//Proc of the 44th Annual Conference on Information Sciences and Systems, 2010:1-6. 被引量:1
  • 9Blumensath T, Davies M. Iterative hard thresholding for com- pressed sensing [J]. Applied and Computatlonal Harmonic Analysis, 2009, 27(3) :265-274. 被引量:1
  • 10Blumensath T, Davies M. Normalised iterative hard thresh-olding:Guaranteed stability and performance [J]. IEEE Se- lected Topics in Signal Processing, 2010, 4(2):298-309. 被引量:1

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献708

同被引文献28

  • 1Baraniuk R G, Compressive sensing[J]. IEEE Single Processing Magazine, 2007, 24(4): 118-121. 被引量:1
  • 2Donoho D L. Compressed sensing[J]. IEEE Transaction on In?formation Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3FowerJ E, Mun S, Tramel E W. Block-based compressed sensing of images and video[J]. Foundations and Trends in Signal Processing, 2010, 4(4): 297-416. 被引量:1
  • 4Cendes, EJ. The restricted isometry property and its implica?tions for compressed sensing[J]. Comptes Rendus-Mathematique, 2008, 346(9): 589-592. 被引量:1
  • 5Ning B D, Qu X B, Guo D, et al. Magnetic resonance image reconstruction using trained geometric directions in 2D redun?dant wavelets domain and non-convex optirnization[J]. Mag?netic Resonance Imaging, 2013,31(9): 1611-1622. 被引量:1
  • 6Qu X B, Cao X M, Guo D, et al. Compressed sensing MRI with combined sparsifying transforms and smoothed eo norm minimization[C] II Proceeding of IEEE International Confer?ence on Acoustics, Speech, and Signal Processing. Los Alami?tos: IEEE Computer Society Press, 2010: 626-629. 被引量:1
  • 7Chen S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SiamJournal on Scientific Computing, 1999,20(1): 33-61. 被引量:1
  • 8TroppJ A, Gibert A C. Signal recovery from random measure?ments via orthogonal matching pursuit[J]. IEEE Transactions On Information Theory, 2007, 53(12): 4655-4666. 被引量:1
  • 9Needle D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEEJournal of Selected Topics in Signal Process?ing, 2010, 4(2): 310-316. 被引量:1
  • 10Donoho D L, Tsaig Y, Drori T, et al. Sparse solution of under?determined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012,58(2): 1094-1121. 被引量:1

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部