期刊文献+

连续切换轮及其移动机器人的自锁特性 被引量:5

Self-lock Characteristics of the Continuous Alternate Wheel and the Mobile Robot
原文传递
导出
摘要 介绍了连续切换轮及其移动机器人的自锁特性.首先,分析了连续切换轮的结构.单独轮子在锁死情况下的摩擦主要分为轮子径向方向的滑动摩擦以及轴向方向的滚动摩擦、轴承摩擦等,设计了实验来测量这些摩擦力的大小.然后,基于测得的摩擦力,介绍了连续切换轮的自锁特性,实验可得在白纸和毛毯上分别有0~15和0~18的自锁区.最后,建立了移动机器人在斜面上自锁时的受力数学模型,并设计了车体在不同介质(白纸、毛毯)斜面上的自锁特性实验.实验结果表明:当车体坐标系与斜面坐标系成45时,自锁角度最小,在白纸和毛毯上分别为19.7和16.4;当车体坐标系与斜面坐标系成0时,自锁角度最大,在白纸和毛毯上分别为30.3和25.5. Self-lock characteristics of the continuous alternate wheel and the mobile robot are described.The structure of the continuous alternate wheel is analyzed firstly.The friction of a locked wheel can be divided into sliding friction in radial direction as well as rolling friction and bearing friction in axial direction,which are measured by experiment.Then,self-lock characteristics of the continuous alternate wheel are introduced based on the frictions measured above.The self-lock areas of the wheel on paper and on carpet are 0~15 and 0~18 by experiments.At last,a mathematical force model of a selflocked robot on a slope is developed,and some experiments about the robot self-lock characteristics on the slope of different materials,i.e.paper and carpet,are carried out.The experiment results indicate that the smallest self-lock angles of the robot on paper and on carpet are 19.7 and 16.4 respectively when the angle between the robot coordinate and slope coordinate is 45.Meanwhile,the biggest self-lock angles of the robot on paper and on carpet are 30.3 and 25.5 respectively when the angle between the robot coordinate and slope coordinate is 0.
出处 《机器人》 EI CSCD 北大核心 2013年第4期449-455,共7页 Robot
基金 浙江省重大工业项目(2008C01032-3)
关键词 摩擦力模型 自锁特性 移动机器人 friction model self-lock characteristic mobile robot
  • 相关文献

参考文献9

  • 1王卫华,熊有伦,孙容磊.一种移动机器人轮子打滑的实验校核方法[J].机器人,2005,27(3):197-202. 被引量:10
  • 2Mori Y, Nakano E, Takahashi T, et al. Mechanism and running modes of new omni-directional vehicle ODV9[J]. JSME Inter- national Journal: Series C, 1999, 42(1): 210-217. 被引量:1
  • 3Nagatani K, Tachibana S, Sofue M, et al. Improvement of odometry for omnidirectional vehicle using optical flow infor- mation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2000: 468-473. 被引量:1
  • 4Gracia L, Tornero J. Kinematic modeling of wheeled mobile robots with slip[J]. Advanced Robotics, 2007, 21(11): 1253- 1279. 被引量:1
  • 5Williams II R L, Carter B E, Gallina P, et al. Dynamic model with slip for wheeled omnidirectional robots[J]. IEEE Transac- tions on Robotics and Automation, 2002, 18(3): 285-293. 被引量:1
  • 6黄善均,黄长江.一种新型的万向车轮:中国,1435330A[P].2003-08-13. 被引量:2
  • 7漆安慎.杜婵英.力学.[M].北京.高教出版社.1996.6. 被引量:7
  • 8瓦伦丁LP.接触力学与摩擦学的原理及其应用[M].李强,雒建斌,译.北京:清华大学出版社,2008. 被引量:1
  • 9Hwang Y S, Lee J, Hsia T C. A recursive dimension- growing method for computing robotic manipulability poly- tope[C]//IEEE International Conference on Robotic and Au- tomation. Piscataway, USA: IEEE, 2000: 2569-2574. 被引量:1

二级参考文献5

  • 1Borenstein J, Feng L. UMBmark - a Method for Measuring, Comparing, and Correcting Dead-reckoning Errors in Mobile Robots [ M ].USA: University of Michigan, 1994. 被引量:1
  • 2Borenstein J, Feng L. Measurement and correction of systematic odometry errors in mobile robots[ J ]. IEEE Transactions on Robotics and Automation, 1996, 12(6): 869 -880. 被引量:1
  • 3Yang H, Park K, Lee J G. A rotating sonar and a differential encoder data fusion for map-based dynamic positioning [J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2000, 29 ( 3 ):211 -232. 被引量:1
  • 4Choi B J, Sreenivasan S V. Gross motion characteristics of articulated mobile robots with pure rolling capability on smooth uneven surfaces[J]. IEEE Transactions on Robotics and Automation, 1999, 15(2): 340 -343. 被引量:1
  • 5Williams R L, Carter B E, Gallina P, et al. Dynamic model with slip for wheeled omnidirectional robots[ J]. IEEE Transactions on Robotics and Automation, 2002, 18(3): 285 -293. 被引量:1

共引文献16

同被引文献43

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部