期刊文献+

基于蚁群算法的体绘制视点优化 被引量:2

Viewpoint optimization based on ant colony algorithm for volume rendering
下载PDF
导出
摘要 针对体绘制的最佳视点问题,提出了一种基于蚁群算法的体绘制视点优化方法.该方法利用信息熵的形式,构造了一种基于体数据2维投影图像的不透明度及其结构信息的视点评价函数作为视点优化的依据;在体绘制的进程中,应用蚁群算法进行视点优化,自动、智能地实现全局最佳视点的选择.实验结果表明:应用该方法进行体绘制的视点优化,具有收敛速度快、精度高和性能稳定的特点,可以显著提高体绘制的效率. In this paper, we presented a method of viewpoint optimization using ant colony algorithm for the opti- mal viewpoint of volume rendering. Utilizing the opacity and structure features of the two-dimensional projected image of volume data, a viewpoint evaluation function was constructed in the form of information-theoretic entropy and regarded as the criterion for optimizing viewpoint. During the process of volume rendering, ant colony algo- rithm was introduced to select the optimal viewpoint automatically and intelligently. Experimental results have shown this method can increase the convergence rate, accuracy and stability in viewpoint optimization, and sig- nificantly improve the efficiency of volume rendering.
作者 张尤赛 辛莉
出处 《江苏科技大学学报(自然科学版)》 CAS 2013年第3期269-274,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 体绘制 视点优化 视点评价 蚁群算法 volume rendering viewpoint optimization viewpoint evaluation ant colony algorithm entropy
  • 相关文献

参考文献5

二级参考文献31

共引文献97

同被引文献21

  • 1Vfizquez P P,Feixas M, Sbert M,et al.Viewpoint selec- tion using viewpoint entropy[C]//Proceedings of Vision Modeling and Visualization Conference.Augsburg: Aka GmbH, 2001 : 273-280. 被引量:1
  • 2V~zquez P P, Feixas M, Sbert M, et al.Automatic view selection using viewpoint entropy and its application to image-based modelling[J].Computer Graphics Forum, 2003, 22(4) :689-700. 被引量:1
  • 3V~zquez P P, Feixas M, Sbert M, et al.Realtime automatic selection of good molecular views[J].Computers and Graphics, 2006,30 ( 1 ) : 98-110. 被引量:1
  • 4Pluim J P W, Maintz J B A, Viergever M A.Image regi- stration by maximization of combined mutual informa- tion and gradient information[J].IEEE Transactions on Medical Imaging, 2000,19 (8) : 809-814. 被引量:1
  • 5Kierstad D, Delbalzo D.A genetic algorithm applied to planning search paths in complicated environments[J]. Military Operations Research, 2003,8 (2) : 45-59. 被引量:1
  • 6Beheshti Z, Shamsuddin S M.Non-parametric particle swarm optimization for global optimization[J].Applied Soft Computing, 2015,28 : 345-359. 被引量:1
  • 7Mangat V, Vig R.Novel associative classifier based on dynamic adaptive PSO: application to determining can- didates for thoracic surgery[J].Expert Systems with Ap- plications,2014,41 (18) : 8234-8244. 被引量:1
  • 8Biswas D K,Panja S C,Guha S.Multi objective optimi- zation method by PSO[J].Procedia Materials Science, 2014,6: 1815-1822. 被引量:1
  • 9Takahashi S, Fujishiro I, Takeshima Y, et al.A feature- driven approach to locating optimal viewpoints for vol- ume visualization[C]//Proceedings of the 16th IEEE Visuali- zation 2005, Washington, DC, USA, 2005 ~ 495-502. 被引量:1
  • 10丁必荣,石鸽娅.基于蜜蜂进化型遗传算法的四杆机构优化设计[J].现代机械,2008(6):9-10. 被引量:3

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部