期刊文献+

无先验知识下基于CHMM的刀具磨损监测技术 被引量:2

Tool Condition Monitoring without Priori Knowledge Based on Hidden Markov Model
下载PDF
导出
摘要 切削刀具的状态直接影响工件加工质量、生产率和产品成本,因此在切削加工过程中监测刀具的状态显得尤为重要。针对实际监测系统通常无法获取刀具各磨损退化状态先验知识的情况,以切削力与切削振动为监测信号,提出无先验知识下基于小波包分析与连续隐马尔可夫模型的刀具磨损监测技术。应用小波包分析技术提取信号特征信息,采用S函数实现特征值归一化处理。利用监测过程中的刀具正常状态下归一化特征信息建立基于连续隐马尔可夫模型的监测模型;根据刀具未知状态特性向量与监测模型间的对数似然度获取刀具性能指标PV,实现刀具磨损状态评价。采用铣刀磨损全寿命数据来验证该方法的有效性,实验结果表明:该方法能在无先验知识的情况下对刀具的健康状态进行较为准确的评估,且所需样本数较少,训练速度快。该技术对实现无先验知识下的刀具智能化在线状态监测具有重要意义。 The condition of cutting tool has a direct effect on processing quality,productivity and produce cost.So,it is very important to monitor tool condition in cutting process.Aiming at the situation that the prior knowledge of all kinds of wear degradation mode cannot be attained usually,the cutting force and vibration signals were measured as monitoring signals by multi-sensors,a tool condition monitoring method without priori knowledge based on wavelet packet decomposition and continuous mixture hidden Markov model(CHMM) was presented.Features were extracted by wavelet package decomposition and normalized by sigmoid function.Fist,during the monitoring process,the normalization features which were attained in normal wear condition were inputted to CHMM to complete model training.Then,the trained model could be used to monitor tool condition through calculating the PV which was attained by calculating log-likelihood ratio of the unknown state and model.In order to validate the effectiveness of the proposed method,the whole life-cycle data of milling cutter wear were used.The experimental result shows that this method can be used to carry out an accurate assessment of the tool state when lack of priori knowledge.Also,it shows that the model has fast learning ability and needs few training samples.It has significant realistic meaning to tool intelligent on-line monitoring without priori knowledge.
出处 《机床与液压》 北大核心 2013年第15期37-41,共5页 Machine Tool & Hydraulics
基金 中央高校基本科研业务费专项资金资助项目(SWJTU12CX039)
关键词 刀具状态监测 隐马尔可夫模型 小波包分析 无先验知识 Tool condition monitoring Hidden Markov model Wavelet packet analysis No priori knowledge
  • 相关文献

参考文献12

  • 1VALLEJO Jr Antonio G,NOLAZCO-FLORES Juan A,MO-RALES-MENfiNDEZ Rub6n, et al. Tool-wear MonitoringBased on Continuous Hidden Markov Models [C]// Pro-ceedings of CIARP,2005 :880 -890. 被引量:1
  • 2LI Weilin,FU Pan,CAO Weiqing. Tool Wear States Recog-nition Based on Frequency-band Energy Analysis and FuzzyClustering [ C ]//Proceeding of 2010 Third InternationalWorkshop on Advanced Computational Intelligence, 2010 :162-167. 被引量:1
  • 3TETI R’JEMIELNIAK K,O’DONNELL G,et al. AdvancedMonitoring of Machining Operations [ J ]. CIRP Annals-Manufacturing Technology,2010,59(2) :717 -739. 被引量:1
  • 4ROTH J T, DJURDJANOVIC D, YANG X,et al. Qualityand Inspection of Machining Operations : Tool ConditionMonitoring[ J]. Journal of Manufacturing Science and Engi-neering,2010,132(4) :1 -16. 被引量:1
  • 5ABELLAN-lVEBCyr Jose Vicente,ROMERO SUBIR6N Fer-nando. A Review of Machining Monitoring Systems Basedon Artificial Intelligence Process Models[ J]. The Interna-tional Journal of Advanced Manufacturing Technology,2010,47(1/2/3/4) :237 -257. 被引量:1
  • 6DIMLA SNR Dimla E. Sensor Signals for Tool-wear Monito-ring in Metal Cutting Operations : A Review of Methods[J]. International Journal of Machine Tools and Manufac-ture,2000,40(8) : 1073 -1098. 被引量:1
  • 7王玫,吕俊杰,王杰.基于连续高斯密度混合HMM的刀具磨损状态监测[J].四川大学学报(工程科学版),2010,42(3):240-245. 被引量:9
  • 8ZHU Kunpeng,WONG Yoke San,HONG Geok Soon. Multi-category Micro-milling Tool Wear Monitoring with Continu-ous Hidden Markov Models [ J ]. Mechanical Systems andSignal Processing,2009,23(2) :547 - 560. 被引量:1
  • 9ERTUNC Huseyin M,LOPARO Kenneth A,OCAK Hasan.Tool Wear Condition Monitoring in Drilling Operations U-sing Hidden Markov Models ( HMMs) [ J] . InternationalJournal of Machine Tools and Manufacture,2001,41 (9):1363 -1384. 被引量:1
  • 10RABINER L R. A Tutorial on Hidden Markov Models andSelected Applications in Speech Recognition [ C ] //Pro-ceedings of the IEEE,1989:257 -286. 被引量:1

二级参考文献15

  • 1万军,蔡复之,张玉峰.铣刀破损功率监控方法的研究[J].清华大学学报(自然科学版),1994,34(2):40-45. 被引量:3
  • 2艾长胜,王宝光,董全成,何光伟.基于声信号HMM的刀具磨损程度分级识别[J].组合机床与自动化加工技术,2007(7):26-29. 被引量:9
  • 3Matsumura Takashi, Usui Eiji. On-line tool wear compensation system in milling operation[ J]. Technical Paper Society of Manufacturing Engineers, 1999,172 : 1 - 6. 被引量:1
  • 4Ong Philip K L, Mannan M A. Experimental modelling of cutting forecs as a function of tool wear in end milling[J]. Proceedings of the 2nd International Conference on Advanced Materials Processing, 2003,438:371 -374. 被引量:1
  • 5Ko Tae Jo, Cho Dong Woo. Adaptive modelling of the milling process and application of a neural network for tool wear monitoring[ J]. International Journal of Advanced Manufacturing Technology, 1996, 12( 1 ) :5 - 13. 被引量:1
  • 6Wang G V P. Fault prognostics using dynamic wavelet neural networks [ J ]. AI EDAM-Atificial Intelligence for Engineering Design Analysis and Manufacturing, 2001,15:383 -391. 被引量:1
  • 7Hatzipantelis E, Murray A, Penman J. Comparing hidden markov models with artificial neural network, architectures for condition monitoring applications[ C ]//Fourth International Conference on Artificial Neural Network, 1995:369- 374. 被引量:1
  • 8Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition [ J ]. Proc IEEE, 1989,77(2) : 257 -286. 被引量:1
  • 9Atlas L,Ostendorf M, Bernard G D. Hidden markov models for monitoring machining tool-wear[ C ]//IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey ,2000:3887 - 3890. 被引量:1
  • 10Wang W Y, Wong A K. Some new signal processing approaches for gear fault diagnosis [ C ]//International Symposium on Signal Processing and its Applications, 1999:587 - 590. 被引量:1

共引文献8

同被引文献13

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部