期刊文献+

相关成分分析—概念与主要算法

Dependent Component Analysis: Concepts and Main Algorithms
下载PDF
导出
摘要 相对于独立成分分析(ICA),相关成分分析(DCA)在实际问题中具有更广泛的应用背景,得到了信号处理研究领域的广泛关注。在ICA方法的基础上,给出了DCA模型的定义、可分离性与分离的唯一性理论,分析了多维ICA模型及其在胎儿心电信号提取中的应用、子带分解ICA模型及其在谐波提取中的应用,具有一定的理论基础和应用背景,在应用问题中,具有一定的参考价值。 Dependent Component Analysis(DCA) as an extended Independent Component Analysis(ICA) model has more applica- tions than ICA and received more and more attentions during the last several years in the study of signal processing, neural network and applications. As two important Blind Source Separation(BSS) methods, DCA and ICA have many relations from the models to the optimal algorithms. In this paper, we briefly review recent advances in BSS for DCA. After a general and detailed definition of the DCA model is given, the relationships between ICA and DCA methods is discuss simultaneously. Moreover, because a funda- mental difficulty in the DCA problem is that it is not unique without extra constraints, the separateness and uniqueness of the DCA model have been discussed and reviewed too. At last, the state-of-art ISA algorithms are overviewed from different theory founda- tions, some DCA algorithms based on the multidimensional ICA and Subband Decomposition ICA Method are constructed for the BSS problem in detail.
作者 丁成义
出处 《微型电脑应用》 2013年第7期24-26,共3页 Microcomputer Applications
关键词 相关成分分析 盲源分离 独立成分分析 稀疏成分分析 Dependent Component Analysis (DCA) Blind Source Separation (BSS) Independent Component Analysis(ICA) Sparse Component Analysis
  • 相关文献

参考文献17

  • 1Cichocki A., Amari S., Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, [K]John Wiley&Sons, New York, 2002. 被引量:1
  • 2Hyvarinen A., Karhunen J., Oja E., Independent compo- nent analysis, [K]John Wiley &Sons, New York, 2001. 被引量:1
  • 3J.F. Cardoso, "Multidimensional independent component analysis", [C] In Proc. of the IEEE 1998 Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP'98), pp: 1941-1944, Seattle, WA, USA, IEEE, 1998. 被引量:1
  • 4Hyvarinen A., Hoyer P., Emergence of phase and shift invariant features by decomposition of natural images in- to independent feature subspaces[J].Neural Computation, 2000, 12(7):1705-1720. 被引量:1
  • 5Valpola H., Harva M., Karhunen J., Hierarchical models of variance sources[J].Signal Processing, 2004, 84(2):267-282. 被引量:1
  • 6Kawanabe M., Muller K.R., Estimating functions for blind separation when sources have variance dependen- cies[J].Journal of Machine Learning Research, 2005, 6:453-482. 被引量:1
  • 7Hyvarinen A., Hurri J., Blind separation of sources that have spatiotemporal variance dependencies. [C]Signal Processing, 2004, 84(1):247-254. 被引量:1
  • 8Hyvarinen A., Hoyer P.O., Inki M., Topographic Inde- pendent Component Analysis[J].Neural Computation, 2001, 13(7):1527-1558. 被引量:1
  • 9Bach F.R., Jordan M.I., Kernel Independent Component Analysis[J].Journal of Machine Learning Research, 2002, 3:1-48. 被引量:1
  • 10Tanaka T., Cichocki A., Subband decomposition inde- pendent component analysis and new performance crite- ria. [C] In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP'04), 2004, 5:541-544. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部