期刊文献+

幂次为3和4的整数变量非线性型的整数部分

The integer parts of a nonlinear form with integer variables and powers 3 and 4
原文传递
导出
摘要 本文利用Davenport-Heilbronn方法证明了对于自然数xj,表达式λ1x31+λ2x32+λ3x33+λ4x44+λ5x45+λ6x46的整数部分在给定条件下可表示无穷多素数,深化了Brüdern等人的广义Riemann假设下等幂次的结果. In this note, using the Davenport-Heilbronn circle method, we proved that under certain conditions the integer parts of λ1x1^3+λ2x2^3+λ3x3^3+λ4x4^4+λ5x5^4+λ6x6^4 are prime infinitely often for natural numbers x j . This result deepens Brüdern’s conclusion which is under general Riemann Hypothesis and same powers.
出处 《中国科学:数学》 CSCD 北大核心 2013年第8期765-772,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11071070) 河南省教育厅自然科学研究计划(批准号:2011B110002)资助项目 河南省创新型科技人才队伍建设工程
关键词 整数变量 丢番图逼近 Davenport-Heilbronn方法 integer variables diophantine approximation Davenport-Heilbronn circle method
  • 相关文献

参考文献7

  • 1Davenport H, Helbronn H. On indefine quadratic forms in five variables. J Lond Math Soc (2), 1946, 21: 185-193. 被引量:1
  • 2Brudern J. Additive diophantine inequalities with mixed powers, III. J Number Theory, 1991, 37: 199-210. 被引量:1
  • 3Brudern J, Kawada K, Wooley T D. Additive representation in thin sequences, VIII: diophantine inequalities in review. Ser Number Theory Appl, 2010, 6: 20-79. 被引量:1
  • 4Vaughan R C. The Hardy-Littlewood Method, 2nd ed. In: Cambridge Tracts in Mathematics, vol. 125. Cambridge: Cambridge University Press, 1997. 被引量:1
  • 5Vaughan R C. Diophantine approximation by prime numbers, I. Proc Lond Math Soc (3), 1974, 28: 373-384. 被引量:1
  • 6Vaughan R C. Diophantine approximation by prime numbers, II. Proc Lond Math Soc (3), 1974, 28: 385-401. 被引量:1
  • 7Davenport H, Roth K F. The solubility of certain diophantine inequalities. Mathematika, 1955, 2: 81-96. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部