期刊文献+

基于改进Theil不等系数的导弹备件消耗预测 被引量:7

Consumption forecast of missile spare parts based on improved Theil coefficient
下载PDF
导出
摘要 针对传统备件消耗预测模型在组合赋权方面存在的缺陷,提出了一种基于改进Theil不等系数的诱导有序加权调和平均(induced ordered weighted harmonic averaging,IOWHA)算子和马尔科夫链(Markov chain,MC)的导弹备件消耗预测模型。首先运用最小二乘法、数据变换技术和加权理论对单项预测模型进行改进;然后建立基于Theil不等系数的IOWHA算子组合预测模型;提出利用MC定性推导出组合模型中各单项预测模型在待预测时点上的预测精度状态,进而应用遗传算法(genetic algorithm,GA)求解得到待预测时点上的组合模型权系数。实例结果表明,所提出的组合预测模型大大降低了预测误差。 To overcome the disadvantage of the traditional combination consumptive forecast model for spare parts in combination weighting, a combination consumptive forecast model of missile spare parts based on improved Theil coefficient induced ordered weighted harmonic averaging (IOWHA) operator and Markov chain (MC) is proposed. Firstly, the single item forecast method is improved with the least square model, date transformation technology and weighing theory. The combination forecast model based on Theil coefficient and IOWHA operator is established. By MC, the forecast accuracy condition of each single item forecast model at the forecast time point can be qualitatively surmised, thus its weighted coefficient at the forecast time point could be obtained by genetic algorithm (GA). Experimental results show that the proposed combination forecast model significantly reduces forecast errors.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第8期1681-1686,共6页 Systems Engineering and Electronics
基金 军队科研项目资助课题
关键词 组合预测 Theil不等系数 诱导有序加权调和平均算子 加权最小二乘支持向量机 遗传算法 马尔科夫链 备件 combination forecast Theil coefficient operator weighted least squares support vector machine (MC) spare parts induced ordered weighted harmonic averaging (IOWHA) (WLS-SVM) genetic algorithm (GA) Markov chain
  • 相关文献

参考文献18

  • 1赵建忠,徐廷学,郭宏超,刘勇.基于改进最小二乘支持向量机的导弹备件消耗预测[J].贵州师范大学学报(自然科学版),2012,30(2):95-102. 被引量:2
  • 2Yang X S. Nature-inspired metaheuristic algorithms[M]. New York: Luniver Press, 2008. 被引量:1
  • 3Nezih A, Lewis A L. Service parts management: demand forecas- ting and inventory control[M]. London: Springer Press, 2011. 被引量:1
  • 4Yager R R. Induced aggregation operators[J]. Fuzzy Sets and Systems, 2003, 137(1): 59-63. 被引量:1
  • 5Xu Z S, Da Q L. The ordered weighted geometric averaging op- erators[J]. International Journal of Intelligent Systems, 2002, 17(6) : 709 - 716. 被引量:1
  • 6Snyder R D, Ralph D K, Anne B O, et al. Forecasting for in- ventory control with exponential smoothing [J].International Journal of Forecasting, 2002, 18(1) : 5 - 18. 被引量:1
  • 7Ji L G, Zhang S N, Zhou M. A new GM(1,1) model for predic- ting oscillation date sequence [ C ] // Prognostics & System Health Management Conference, 2011 : 257 - 259. 被引量:1
  • 8刘思峰等著..灰色系统理论及其应用 第3版[M].北京:科学出版社,2004:376.
  • 9Suykens J A K, Van Gestel T, De Brabanter J, et al. Least squares support vector machines [M]. Singapore: World Scien- tific Publishing Co. Pte. Ltd. , 2002. 被引量:1
  • 10Olivier C, Vladimir V, Olivier B, et al. Choosing multiple pa- rameters for support vector machines[J]. Machine Learning, 2002, 46(7): 131-159. 被引量:1

二级参考文献60

共引文献41

同被引文献76

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部