期刊文献+

三种空穴模型在可调汽蚀文氏管数值模拟中的对比研究 被引量:12

Comparative Investigation among Three Cavitation Models for Simulating Cavitating Venturi
下载PDF
导出
摘要 采用Singhal et al,Zwart-Gerber-Belamri,Schnerr and Sauer三种空穴模型,结合Mixture多相流模型,对不同开度下的可调汽蚀文氏管进行了数值模拟,并将计算结果与试验数据进行了对比分析,讨论了计算模型的适应性。研究结果表明三种数值模型均能模拟可调汽蚀文氏管的内部流场,计算结果与试验结果具有较好的一致性且随着开度的增大计算精度提高。相比较而言,Zwart-Gerber-Belamri空穴模型计算精度较高,收敛速度较快,而且能够捕捉到相变过程中的温度变化,是一种较为实用的可调汽蚀文氏管的数值计算模型。 Numerical models based on the mixture model, Zwart-Gerber-Belamri model, and Schnerr muhiphase model and three different cavitation models (Singhal and Sauer model) were investigated to simulate cavitating venturi with different throttle distances. Meanwhile, the adaptability of each of three models was discussed in terms of ac- curacy and efficiency. Results show that the three numerical models are suitable for simulating the cavitating ventu- ri. In addition, calculated results agree with test data and the relative error decreases with increasing throttle dis- tance. Compared with the other two cavitation models, the Zwart-Gerber-Belamri model relatively has higher preci- sion, consumes less running time, and indicates the temperature distribution in the flow field; thus ZGB model is best for simulating cavitating venturi.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第4期596-601,共6页 Journal of Northwestern Polytechnical University
关键词 可调汽蚀文氏管 数值模拟 流量调节 多相流模型 空穴模型 cavitation, computer simulation, computer software, errors, experiments, flow fields, muhiphase flow, rocket engines, turbulence models cavitating venturi, cavitation model, flow regulation, mul- tiphase model
  • 相关文献

参考文献12

  • 1Harvey D W. Throttling Venturi Valves for Liquid Rocket Engines. AIAA-1970-0703. 被引量:1
  • 2张育林.变推力液体火箭发动机及其控制技术[M].北京:国防工业出版社,2001.. 被引量:6
  • 3付勇..文丘里管内空泡动力学特性研究[D].大连理工大学,2007:
  • 4韩泉东..空间变推力液体火箭发动机流量调节及燃烧过程仿真研究[D].国防科学技术大学,2006:
  • 5Maria Grazia De Giorgi, Antonio Ficarella, et al. Modeling Nucleation Phenomena in Cavitating Flow. A/AA-2007-4459. 被引量:1
  • 6Singhal A K, Athavale M M, Huiying L and Jiang L. Mathematical Bases and Validation of the Full Cavitation Model. ASME Journal of Fluids Engineering, 2002, 124 : 617-624. 被引量:1
  • 7Zwart P J, Gerber A G, Belamri T. A Two-Phase Flow Model for Predicting Cavitation Dynamics. ICMF 2004, Yokohama, Ja- pan, 2004. 被引量:1
  • 8Schnerr G H, Sauer J. Physical and Numerical Modeling of Unsteady Cavitation Dynamics. ICMF 2001, New Orleans, USA, 2001. 被引量:1
  • 9Xu Chanhai. Heister S D. Cavitatin Flow Modelin Including Enerav Interehan, Effects_ AIAA-2OOq.dO1. 被引量:1
  • 10钱忠东,黄社华.四种湍流模型对空化流动模拟的比较[J].水科学进展,2006,17(2):203-208. 被引量:26

二级参考文献10

  • 1Launder B E, Spalding D B. The Numerical Computation of Turbulent Flows[J]. Computer Methods in Applied Mechanics and Engineering,1974, 3:269. 被引量:1
  • 2Yakhot V, Orszag S A, Thangam S, et al. Development of Turbulence Models for Shear Flows by a Double Expansion Technique [ J ]. Phys Fluids A, 1992, 7: 1510. 被引量:1
  • 3Shih T - H, Liou W W, Shabbir A, et al. A New Eddy - Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validatlon[J]. Computers Fluids, 1995, 3:227. 被引量:1
  • 4Zhang J, Nieh S, Zhou L X. A new version of algebraic stress model for simulation strongly swirling flows[J]. Numerical Heat Transfer(Part B), 1992,22:49. 被引量:1
  • 5Kim S - E, Choudhury D. A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient[J]. ASME FED, 1995, 217:1 141. 被引量:1
  • 6Kader B. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers[ J]. Int J Heat Mass Transfer, 1983, 24:1541. 被引量:1
  • 7Goffred S. Berntsen and Morten Kjeldsen. Cavitation Induced Dynamics in Hydraulic Machinery[ A]. 10^th International Meeting of the Work Group on The Behavior of Hydraulic Machinery Under Steady Oscillatory Condition[ C]. Trondheim, Norway, June 26 - 28, 2001. 被引量:1
  • 8Robert F Kunz, David A Boger, David R Stinebring, et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers & Fluids, 2000, 29:849. 被引量:1
  • 9Inanc Senocak, Wei Shyy. A pressure- based method for turbulent cavitating flow computation[J]. Journal of Computational Physics, 2002,176:363. 被引量:1
  • 10Ashok K Singhal, Mahesh M Athavale, Huiying Li, et al. Mathematical basis and validation of full cavitation model[J]. Journal of Fluid Engineering, 2002, 124:617. 被引量:1

共引文献30

同被引文献101

引证文献12

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部