摘要
A novel chelating resin OABA,capable of removing Cu(Ⅱ) from aqueous solution,was synthesized via the reaction of macroporous chloromethylated PS-DVB copolymer beads with orotic acid.The elemental analysis(EA),Fourier transform infrared spectroscopy(FT-IR),and scanning electron microscopy microscope-energy dispersive X-ray spectroscopy(SEM-EDS) were used in the characterization of the synthesized chelating resin.Multiple,static batch adsorption experiments were conducted at different initial concentrations and temperatures.OABA showed good adsorption capacity for Cu(Ⅱ) and the equilibrium data could be well matched with the Freundlich isotherm model.Coexisting sodium chloride and calcium chloride in solutions favored the Cu(Ⅱ) adsorption.Moreover,the desorption process of Cu(Ⅱ) was tested and over 90%regeneration efficiency for the spent OABA was achieved at ammonia concentrations ranging from 1.0%to 2.0%.The results suggested that OABA would be a potential alternative adsorbent for Cu(Ⅱ),even with other heavy metal ion treatments of wastewater.
A novel chelating resin OABA,capable of removing Cu(Ⅱ) from aqueous solution,was synthesized via the reaction of macroporous chloromethylated PS-DVB copolymer beads with orotic acid.The elemental analysis(EA),Fourier transform infrared spectroscopy(FT-IR),and scanning electron microscopy microscope-energy dispersive X-ray spectroscopy(SEM-EDS) were used in the characterization of the synthesized chelating resin.Multiple,static batch adsorption experiments were conducted at different initial concentrations and temperatures.OABA showed good adsorption capacity for Cu(Ⅱ) and the equilibrium data could be well matched with the Freundlich isotherm model.Coexisting sodium chloride and calcium chloride in solutions favored the Cu(Ⅱ) adsorption.Moreover,the desorption process of Cu(Ⅱ) was tested and over 90%regeneration efficiency for the spent OABA was achieved at ammonia concentrations ranging from 1.0%to 2.0%.The results suggested that OABA would be a potential alternative adsorbent for Cu(Ⅱ),even with other heavy metal ion treatments of wastewater.
基金
the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions