期刊文献+

融合LBP与背景建模的自适应目标检测混合算法 被引量:3

Adaptive Targets-detecting Algorithm Based on Combination of LBP and Background Modeling
下载PDF
导出
摘要 提高目标检测算法在复杂场景下的检测鲁棒性是目前计算机视觉领域的一个重点、难点问题。为了实现在多种背景扰动以及阴影同时存在的复杂场景下,对运动目标的准确、鲁棒提取,论文提出了一种融合纹理特征和背景建模的自适应目标检测混合算法。首先,为了对阴影进行有效处理,论文提出融合纹理特征的背景建模法;同时,在背景建模的基础上,引入亮度信息预处理程序;最后,论文在对复杂场景下(包括室内、室外)的背景扰动进行分析归类的基础上,将帧间差分法和背景建模法有机结合,有效提高算法对复杂场景的适应性。实验结果表明,复杂场景下,该算法对大多数背景扰动都具有一定的鲁棒性,能够实时、准确地检测出运动目标。 Improving the robustness of targets-detecting algorithm under complicated scenes is an important and difficult research prob- lem in the field of computer vision. In order to achieve accurate and robust detecting result under complex scenes, with all kinds of back- ground disturbance and shadow, an adaptive targets-detecting algorithm based on LBP and background modeling method(BMM) is proposed in this paper. Firstly, BMM combined with LBP, which is less influenced by shadow than traditional Color-based BMM, is presented. Sec- ondly, light information pretreatment is proposed for situation of sudden brightness changes. Finally, an adaptive detecting mechanism is proposed. Experimental results show that, the proposed algorithm has robustness for most background disturbances, effectively improved a- daptability, real-time performance and accuracy of detecting effect under complex scenes.
出处 《计算机与数字工程》 2013年第7期1081-1084,共4页 Computer & Digital Engineering
基金 宝鸡文理学院科学研究项目(编号:YK1035)资助
关键词 背景扰动 LBP纹理 背景建模 自适应目标检测 background disturbance LBP background modeling adaptive target detection
  • 相关文献

参考文献6

二级参考文献142

  • 1于成忠,朱骏,袁晓辉.基于背景差法的运动目标检测[J].东南大学学报(自然科学版),2005,35(A02):159-161. 被引量:48
  • 2Zha Yufei Bi Duyan.Adaptive learning algorithm based on mixture Gaussian background[J].Journal of Systems Engineering and Electronics,2007,18(2):369-376. 被引量:9
  • 3Barron J,Fleet D,Beauchemin S.Performance of optical flow techniques[J].International Journal of Computer Vision, 1994, 12( 1 ) : 42-77. 被引量:1
  • 4Haritaoglu l,Harwood D,Davis L S.Real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):809-830. 被引量:1
  • 5Paragios N, Deriche R. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266-280. 被引量:1
  • 6Fejes S, Davis L S. Detection of Independent Motion Using Directional Motion Estimation[R]. University of Maryland, Technical Report: CAR-TR-866, CS 3815, 1997. 被引量:1
  • 7Kim J B, Kim H J. Efficient Region-based Motion Segmentation for a Video Monitoring System[J]. Pattern Recognition Letters, 2003, 24(1-3): 113-128. 被引量:1
  • 8Maadi A E, Maldague X. Outdoor Infrared Video Surveillance: A Novel Dynamic Technique for the Subtraction of a Changing Background of IR Images[J]. Infrared Physics & Technology, 2007, 49(3): 261-265. 被引量:1
  • 9[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143 被引量:1
  • 10[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81 被引量:1

共引文献322

同被引文献26

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部