期刊文献+

一种稳健的二维自适应波束形成算法 被引量:2

A robust two-dimensional adaptive beamforming algorithm
下载PDF
导出
摘要 针对已存在的各种二维capon波束形成器稳健算法性能单一,只能对1种或2种影响波束形成算法性能的因素具有稳健性,缺乏对多种情况都具有稳健性的缺点,提出一种基于空间谱估计的二维稳健自适应波束形成方案。首先,提出一种新的二维解相关空间谱估计算法,该算法将二维角度估计问题用4个一维空间谱估代替,并采用修正的MUSIC算法实现解相干,然后利用得到的角度信息构造虚拟干扰,克服观察方向误差并展宽零陷。仿真结果表明:该算法结合了空间谱估计技术和自适应波束形成技术的优点,对期望信号导向矢量误差、干扰到达角失配及信号相关等都具有足够的稳健性。 The existing two-dimensional robust adaptive beamforming algorithms only have simplex function, and the multifunctional robust beamforming algorithms are scarce. Aiming at all the cases which lead to performance degradation, an improved two-dimensional robust adaptive beamforming algorithm combined with spatial spectrum estimation technology was considered. Firstly, a new two-dimensional spatial spectrum estimation algorithm was proposed. This method utilized four one-dimensional spatial spectrum estimations to estimate the directions of the signals, and the modified MUSIC algorithm was used to estimate the coherent signals. Then the weight vector was calculated via virtual interferences constructed with the aid of angle information. Simulation results show that the algorithm simultaneously has the advantages of the adaptive beamforming technology and the spectrum estimation technology, and has sufficient robustness for steering vector error, interference angle of arrival mismatch and signal interrelation.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期2339-2345,共7页 Journal of Central South University:Science and Technology
基金 中央高校基本科研业务费专项项目(HEUCF120802) 国家自然科学基金资助项目(61201410)
关键词 二维自适应波束形成 稳健性 空间谱估计 修正的MUSIC 虚拟干扰 two-dimensional adaptive beamforming robustness spatial spectrum estimation modified MUSIC virtualinterfaces
  • 相关文献

参考文献15

  • 1鄢社峰,马远良.传感器阵列波束优化设计及应用[M].北京:科学出版社,2009. 被引量:6
  • 2王永良,丁前军,李荣峰.自适应阵列处理[M].清华大学出版社,2009:291-320. 被引量:2
  • 3Lorenz R G, Boyd S R. Robust minimum variance beamforming[J]. IEEE Trans Signal Processing, 2005, 53(5): 1684-1696. 被引量:1
  • 4Vorobyov S A, CHEN Haihua, Gershman A B. On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response constraints[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5719-5724. 被引量:1
  • 5Hoerl A E, Kennard R W, Baldwin K F. Ridge regression: Some simulations[J]. Communication in Statistics: Theory and Methods, 1975,53(3): 105-123. 被引量:1
  • 6Yngve S, Richard A, Peter S. Automatic robust adaptive beamforming via ridge regression[J]. Signal Processing, 2008, 88: 33-49. 被引量:1
  • 7DU Lin. Fully automatic computation of diagonal loading levels for robust adaptive beam forming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 449-458. 被引量:1
  • 8Frost 0 L. An algorithm for linearly constrained adaptive array processing[J]. Proceeding of the IEEE, 1972,60(8): 926-935. 被引量:1
  • 9刘永旭,杨小鹏,龙腾.基于导数约束的互谱降秩自适应波束形成[J].北京理工大学学报,2011,31(9):1095-1099. 被引量:5
  • 10Zatman M. Production of adaptive array troughs by dispersion synthesis[J]. Electronics Letters, 1995,31(25): 2141-2142. 被引量:1

二级参考文献29

  • 1[1] STOICA P,NEHORAI A.MUSIC,maximum likelihood,and Cramer-Rao bound[J].IEEE Trans on ASSP,May 1989,37(5):720-741. 被引量:1
  • 2[2] KAVEH M,BARABELL A J.The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise[J].IEEE Trans on ASSP,April 1986,34(4):331-341. 被引量:1
  • 3[3] SHAN T J,WAX M,KAILATH T.On spatial smoothing for direction-of-arrival estimation of coherent signals[J].IEEE Trans on ASSP,Aug 1985,33:806-811. 被引量:1
  • 4[4] WILLIAMS R T,PRASAD S,MAHALANABIS A K,et al.An improved spatial smoothing technique for bearing estimation in a multipath environment[J].IEEE Trans on ASSP,April 1988,36:425-432. 被引量:1
  • 5[5] TAGA F,SHIMOTAHIRA H.A novel spatial smoothing technique for the MUSIC algorithm[J].IEICE Trans commun,1995,78-B:1513-1517. 被引量:1
  • 6[6] KUNDU D.Modified MUSIC algorithm for estimating DOA of signals[J].Signal Processing,1996,(48):85-89. 被引量:1
  • 7Frost I O. An algorithm for linearly constrained adaptive array processing [C]// Proceedings of the IEEE. [S.l. ]: IEEE, 1972 :926 - 935. 被引量:1
  • 8Griffiths L J, Jim C W. An alternative approach to linearly constrain adaptive beamforming[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(1) :27 - 34. 被引量:1
  • 9Reed I S. Rapid convergence rate in adaptive antenna [J]. IEEE Transactions on Aerospace and Electronic Systems, 1974,10(6) :853-863. 被引量:1
  • 10Tufts D, Kirsteins I, Kunmaresan R. Data-adaptive signal estimation by singular value decomposition of a data matrix[C]// Proceedings of the IEEE. [S. l.]: IEEE, 1982:684 - 685. 被引量:1

共引文献98

同被引文献36

  • 1韩芳明,张守宏.用改进的MUSIC算法实现相干多径信号分离[J].系统工程与电子技术,2004,26(6):721-723. 被引量:6
  • 2Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. 被引量:1
  • 3Cai B, Li Y M, Wang H Y. Forward/backward spatial reconstruction method for directions of arrival estimation of uncorrelated and coherent signals[J]. IET Microwaves, Antennas & Propagation, 2012, 6(13): 1498-1505. 被引量:1
  • 4Kundu D. Modified MUSIC algorithm for estimating DOA of signals[J]. Signal Processing, 1996, 48: 85-90. 被引量:1
  • 5SUN Yongmei, KAN Yuanyuan, ZHAO Wei. Robust DOA estimation for coherent signals based on modified MUSIC algorithm[C]//2012 Third International Conference on Intelligent Control and Information Processing (ICICIP). CA: IEEE Computer Society, 2012:31-35. 被引量:1
  • 6Tayem N, Kwon H M. L-Shape 2-Dimensional arrival angle estimation with propagator method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(5): 1622-1630. 被引量:1
  • 7Kim J M, Lee O K, Ye J C. Compressive MUSIC= revisiting the link between compressive sensing and array signal processing[J]. IEEE Trans.on Information T[:eory, 2012, 58(1)= 278-301. 被引量:1
  • 8Naida P S. Sensor array signal processing :M:. Florida: CRC Press, 2010. 被引量:1
  • 9Zhang Y D, Amin M G, Himed B. Sparsity-based DOA estima- tion using co-prime arrays[C://Proc, of the IEEE InternationalConference on Acoustics, Speech and Signal Processing, 2013 : 3967 - 3971. 被引量:1
  • 10Liu Z, Ruan X, He J. Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array[J]. Multidimen- sional Systems : Signal Processing, 2013, 24(1) : 105 - 120. 被引量:1

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部