期刊文献+

高压下合成气层流火焰传播特性的实验研究 被引量:4

Experimental Investigation on Laminar Flame Characteristics of Syngas at Elevated Pressures
原文传递
导出
摘要 本文利用双腔泄压式定压燃烧弹,研究了高压下典型IGCC合成气的层流火焰传播特性,得到了不同压力(0.1~1 MPa)和不同当量比下(0.6~3.0)合成气的层流火焰传播速度和Markstein长度。实验结果表明,层流火焰传播速度随当量比先增加后减少,随压力的增加而减小。Davis和Sun机理能较好地预测高压下合成气层流火焰的传播速度。Markstein长度随当量比的增加而增加,随压力的增加而减小。 This paper presented experimental investigation on effects of pressure on laminar flame speed and Markstein length of typical syngas in a recently developed dual-chambered, pressure-release type high-pressure combustion apparatus. The results show that the laminar flame speed of syngas firstly increases with the equivalence and then begins to decrease with further increasing equivalence ratio. It decreases with the increase of pressure. The laminar flame speed predicted by Davis and Sun mechanisms was in agreement with the experimental results at elevated pressures. Markstein length increases with equivalence ratio and decreases with the increase of ~ressure.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第8期1560-1564,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.50976115) 科技部863项目(No.2011AA050606)
关键词 合成气 球形火焰 层流火焰传播速度 Markstein长度 syngas propagating spherical flame laminar flame speed Markstein length
  • 相关文献

参考文献20

  • 1Moliere M. Benefiting From the Wide Fuel Capability Ofgas Turbines: A Review of Application Opportunities[C]// ASME Conference Proceedings. France: ASME, 2002:227-238. 被引量:1
  • 2陶志强,艾育华,孔文俊.高压下CO_2稀释的CO/H_2/Air火焰贫可燃极限处的辐射重吸收效应的数值研究[J].工程热物理学报,2012,33(7):1243-1246. 被引量:4
  • 3ZHOU Z, TAO Z Q, LIN B Y, et al. Numerical Investi- gation on Effects of High Initial Temperatures and Pres- sures on Flame Behavior of CO/He/Air Mixtures Near The Dilution Limit [J]. International Journal of Hydrogen Energy, 2013, 38(1): 274-281. 被引量:1
  • 4Hassan M I, Aung K T, Feath G M. Properties of Lam- inar Premixed CO/H2/Air Flames at Various Pressures [J]. Journal of Propulsion Power, 1997, 13(2): 239-245. 被引量:1
  • 5Mclean I C, Smith D B, Taylor S C. The Use of Carbon Monoxide/Hydrogen Velocities to Examine the Rate of the CO+OH reaction [J]. Progress in Energy and Combustion Science, 1994, 25(1): 749-757. 被引量:1
  • 6Brown M J, Mclean I C, Smith D B, et al. Markstein Lengths of CO/He/Air Flames, Using Expanding Spheri- cal Flames [J]. Proceeding Combustion Institution, 1996, 26(1): 875-881. 被引量:1
  • 7Vagelopoulos C M, Egolfopoulos F N. Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air [J]. Proceed- ing Combustion Institution, 1994, 25(1): 131 1323. 被引量:1
  • 8SUN H Y, YANG S I, Jomass G, et al. High-Pressure Laminar Flame Speeds and Kinetic Modelling of Carbon Monoxide/Hydrogen Combustion [J]. Proceeding Com- bustion Institution, 2007, 31(1): 439-446. 被引量:1
  • 9Natarajan J, Lieuwen T, Seitzman J. Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Pre- heat Temperature, and Pressure [J]. Proceeding Combus- tion Institution, 2007, 31(2): 104-119. 被引量:1
  • 10Natarajan J, Kochar Y, Lieuwen T, et al. Pressure and Preheat Dependence of Laminar Flame Speeds of H2/CO/CO2/O2/He Mixtures [J]. Proceeding Combus- tion Institution, 2009, 32(1): 1261-1268. 被引量:1

二级参考文献13

  • 1Moliere M, Benefiting From the Wide Fuel Capability of Gas Yurbines: a Review of Application Opportunities [R]. ASME Paper GT-2002-30017, 2002. 被引量:1
  • 2Williams F A, Combustion Theory [M]. second ed. Ben- jamin Cummins, Menlo Park, 1985. 被引量:1
  • 3Spalding D B. A Theory of Inflammability Limits and Flame-Quenching [J]. Pro R Soc London A, 1957, 240: 83- 100. 被引量:1
  • 4Mclean I C, Smith D B, Taylor S C. The Use of Carbon Monoxide/Hydrogen Velocities to Examine the Rate of the CO+OH Reaction [J]. Proc Combust Inst, 1994, 25: 749- 757. 被引量:1
  • 5Hassan M I, Aung K T, Feath G M. Properties of Laminar Premixed CO/H2/Air Flames at Various Pressures [J]. J Propul Power, 1997, 13(2): 239-245. 被引量:1
  • 6Sun H Y, Yang S I, Jomass G, et al. High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion [J]. Proc Combust Inst, 2007, 31:439-446. 被引量:1
  • 7Davis S G, Joshi A V, Wang H, et al. An Optimized Kinetic Model of H2/CO Combustion [J]. Proc Combust Inst, 2005, 30:1283-1292. 被引量:1
  • 8Chen Z, Qin X, Xu B, et al. Studies of Radiation Ab- sorption on Flame Speed and Flammability Limit of CO2 Diluted Methane Flames At Elevated Pressures [J]. Proc Combust Inst, 2007, 31:2693- 2700. 被引量:1
  • 9Natarajan J, Lieuwen T, Seitzman J. Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Pre- heat Temperature, and Pressure [J]. Proc Combust Inst, 2007. 31:104- 119. 被引量:1
  • 10Liu F S, Smallwood Gregory J, Glder mer L. Applica- tion of the Statistical Narrow-Band Correlated-k Method to Non-Grey Gas Radiation in CO2-H20 Mixtures: Ap- proximate Treatments of overlapping Bands [J]. J Quant Speetrosc Radiat Transfer, 2001, 68:401-417. 被引量:1

共引文献3

同被引文献29

  • 1Natarajan J. Experimental and Numerical Investigation of Laminar flame speeds of H2/CO/CO2/N2 Mixtures [D]. Atlanta: Georgia Institute of Technology, 2008. 被引量:1
  • 2Wang J, Huang Z, Kobayashi H, et al. Laminar Burning Velocities and Flame Characteristics of CO-H2-CO2-O2 Mixtures [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19158-19167. 被引量:1
  • 3Prathap C, Ray A, Ravi M. Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Tem- perature, and Pressure Condition [J]. Combustion and Flame, 2012, 159(2): 482 492. 被引量:1
  • 4Ai Y, Zhou Z, Chen Z, et al. Laminar Flame Speed and Markstein Length of Syngas at Normal and Elevated Pres- sures and Temperatures [J]. Fuel, 2014, 137:339-345. 被引量:1
  • 5Clavin P. Dynamic Behavior of Premixed Flame Fronts in Laminar and Turbulent Flows [J]. Progress in Energy and Combustion Science, 1985, 11(1): 1 59. 被引量:1
  • 6Kee R J, Grcar J F, Smooke M, et al. A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames [R]. Sandia Report, SAND85 8240, 1985. 被引量:1
  • 7Davis S G, Joshi A V, Wang H, et al. An Optimized Ki- netic Model of H2/CO Combustion [J]. Proceedings of the Combustion Institute, 2005, 30(1): 1283-1292. 被引量:1
  • 8Sun H, Yang S, Jomaas G, et al. High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monox- ide/Hydrogen Combustion [J]. Proceedings of the Com- bustion Institute, 2007, 31(1): 439-446. 被引量:1
  • 9Li J, Zhao Z, Kazakov A, et al. A Comprehensive Kinetic Mechanism for CO, CH20, and CH3OH Combustion [J]. International Journal of Chemical Kinetics, 2007, 39(3): 109 136. 被引量:1
  • 10Chen Z. Effects of radiation and Compression on Prop- agating Spherical Flames of Methane/Air Mixtures Near the Lean Flammability Limit [J]. Combustion and Flame, 2010, 157(12): 2267 -2276. 被引量:1

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部