摘要
为提高阳光利用率和光电转换率,研究了聚光内球面太阳能电池的主要性能,设计了聚光内球面太阳能电池的结构.通过菲涅耳聚光镜将太阳光聚光后射入内表面制备了多晶硅光伏电池的球腔内,在内球面上实现了聚光光伏效应.利用腔内光子气体模型分析计算了内球面上的光照强度,提出硅光电池上的最佳光强概念,计算了在内球面多晶硅电池半导体层厚10μm时最佳聚光倍数为18、层厚5μm时最佳聚光倍数为9.应用有限元分析法讨论了聚光内球面太阳能电池系统的温度,在AM1.5,8倍聚光条件下,光伏电池最高温度353.15K,处于正常工作范围.采用主动风冷或水冷方法提高对流换热系数可大大降低光伏电池温度,稳定工作效率.通过分析硅光电池效率制约因素,设计了内球面光伏电池的优化结构,填充因子可达0.85,阳光辐射功率为800mW/cm2时,聚光内球面太阳能电池效率将超过33%.
In order to raise utilization ratio of sunlight and photoelectric conversion rate, the inner spherical focusing solar cell structure and the main performance are designed and studied. A Fresnel condenser is used to focus the sun's light onto the inner surface of a ball cavity which is prepared with polycrystalline silicon photovoltaic cells, implementing concentrating photovoltaic effect on the sphere. By using Inner cavity photon gas model, the light intensity in the inner sphere is analyzed and calculated, the concept of optimum light intensity on the silicon photocell is put forward, and the best condenser multiples for a spherical semiconductor polysilicon ~ batteries of 18 and 9 with the layer thicknesses of 10 gm and 5/,m are calculated. Finite element analysis method is applied to discuss the inside sphere temperature of the solar system. Under the condition of the AM 1.5, 8 times concentration, photovoltaic cells' maximum temperature is 353. 15 K, in the normal scope of work. Active air cooling or water cooling method can greatly increase the convective heat transfer coefficient and decrease the temperature of the photovoltaic cells, and stabilize the work efficiency. By analyzing the constraints of the efficiency of the silicon photocell, the optimize structure of the inner spherical photovoltaic cells is designed; the fill factor can achieve 0.85, and the efficiency of the solar cells inside the spherical condenser can be more than 33o/00 when the sunlight radiation power is 800 mW/cm2.
出处
《光子学报》
EI
CAS
CSCD
北大核心
2013年第7期782-786,共5页
Acta Photonica Sinica
基金
吉林省科技发展计划项目(No.20100573)资助
关键词
聚光光伏
腔内光强
内球面光伏电池
硅光电池效率
多晶黑硅
Concentrated Photo Voltaic(CPV)
Inner chamber light intensity
Inside spherical photovoltaic cells
Silicon photocell efficiency
Polycrystalline black silicon