期刊文献+

自适应谐振理论在基于行为的故障诊断中的应用研究 被引量:2

Research of ART2 in behavior-based faults diagnosis
下载PDF
导出
摘要 分析了基于行为的故障诊断(BFD)方法所具有的理论和应用方面的优点,说明了自适应谐振理论(ART2)具有实现BFD系统所需的理论基础和功能要求。提出将ART2网络应用于基于行为的故障诊断方法中,通过建立基于ART2的BFD诊断系统,完成了基于行为的状态识别和自学习功能。将此方法应用于转子系统的故障诊断中,验证了该方法的正确性和可行性。 The theoretic and application superiority of Behavior-based Faults Diagnosis (BFD) was analyzed in this paper. And the theory and capability of ART2 were discussed which adapted the request of developing a BFD system. In the foundation of theoretical analysis, BFD system based on ART2 network was proposed and which completed the functions of condition recognition and self-learning. This method was used in the rotor system faults diagnosis, and its feasibility and the accuracy were confirmed.
出处 《制造技术与机床》 北大核心 2013年第3期140-144,共5页 Manufacturing Technology & Machine Tool
基金 广西制造系统与先进制造技术重点实验室主任基金项目(09-007-05_014) 广西教育厅立项项目(201106LX84)
关键词 基于行为 ART2 故障诊断 转子系统 Behavior-based ART2 Faults Diagnosis Rotor System
  • 相关文献

参考文献7

  • 1许飞云,贾民平,钟秉林,黄仁.基于行为的智能化故障诊断(BFD)方法的研究[J].机械科学与技术(江苏),1997,26(3):55-58. 被引量:2
  • 2钟秉林,黄仁.机械故障诊断学[M].2版.北京:机械工业出版社,2005:127-149. 被引量:1
  • 3HAGAN Martin T,DEMUTH Howard B,BEALE Mark H.神经网络设计[M].戴葵译.北京:机械工业出版社,2002:49-56. 被引量:10
  • 4Fung W K, Liu Y H. Adaptive categorization of art networks in robot be- havior learning using game-theoretic formulation[ J]. Neural Networks, 2003,16 (10) : 1403-1420. 被引量:1
  • 5阮晓钢编著..神经计算科学 在细胞的水平上模拟脑功能[M].北京:国防工业出版社,2006:750.
  • 6周春光, 梁艳春..计算智能[M],2001.
  • 7A1-Badour F, Sunar M, Cheded L. Vibration analysis of rotating nm- chinery using time - frequency analysis and wavelet techniques [ J ]. Mechanical Systems and Signal Processing, 2011,25 (6) :2083-2101. 被引量:1

共引文献10

同被引文献21

  • 1周丽芳,李伟生,黄颖.模式识别原理及工程应用[M]北京:机械工业出版社,2013. 被引量:1
  • 2The Association of German Engineers. VDI 3834-- 2014 Part 1:measurement and evaluation of the me- chanical vibration of wind turbines and their compo- nents-wind turbines with gearhox [ S]. Germany~ VDI Society Product and Process Design, 2014 : 2-3. 被引量:1
  • 3国家能源局.NB/T31004--2011风力发电机组振动状态监测导则[s].北京:中国电力出版社,2011:8-9. 被引量:1
  • 4JIANG Yonghua, TANG Baoping, OIN Yi, et al. Feature extraction method of wind turbine based on a- daptive Morlet wavelet and SVD[-J~. Renewable Ener- gy, 2011,36(8) :2146-2153. 被引量:1
  • 5BAFROUIH H, OHADI A. Application of wavelet energy and Shannon entropy for feature extraction in gearbox fault detection under varying speed conditions [J].Neuroeomputing, 2014,133 : 437-445. 被引量:1
  • 6TANG Baoping,SONG Tao,LI Feng,et al. Fault di- agnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine[J]. Renewable Energy, 2014,62 : 1-9. 被引量:1
  • 7YANG Zhiling, WANG Bin, DONG Xinghui, et al. Expert system of fault diagnosis for gear box in wind turbine[J]. Systems Engineering Proeedia, 2012, 4.. 189-195. 被引量:1
  • 8LEE I S,LEE S J,KIM Y W. Fault diagnosis based on discrete wavelet transform and ART2 neural net- work[C]//Proceedings of the SICE Annual Confer- ence. Taiwan.. IEEE,2010 : 3365-3370. 被引量:1
  • 9SHAO Renping, HU Wentao, WANG Yayun, et al. The fault feature extraction and classification of gear using principal component analysis and kernel princi- pal component analysis based on the wavelet packet transform[J]. Measurement, 2014,54 : 118-132. 被引量:1
  • 10张栾英,欧丽君,王亚顺.基于BP神经网络的解耦方法在直流锅炉控制系统中的应用[J].动力工程,2009,29(9):823-826. 被引量:4

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部