期刊文献+

基于拟插值理论的三维体数据场高精度重建算法 被引量:4

A High-Precision Reconstruction Algorithm of 3D Data Fields Based on Quasi-interpolation
下载PDF
导出
摘要 三维体数据场重建是体数据建模与分析的一个非常基础和重要的步骤,重建算法的精度直接决定了数据重采样和后续分析的准确性.文中发展了基于拟插值方法的三维体数据场重建理论,首次提出一种充分利用体数据自身信息与核函数优化相结合的预处理算法.在合理假设的前提下得到重建误差的表述式;然后充分利用三维体数据自身的信息全局优化该误差,使得重建误差在L2意义下达到最小.最后通过丰富的重建实例,显示了文中算法能有效地提高重建精度,并能够更好地保持三维体数据的高频信息. 3D data field reconstruction is a fundamental and an important step for volume modeling and analysis. The precision of reconstruction affects directly the accuracy of the following process such as data resampling and analysis. Based on the quasi-interpolation theory, we develop a novel estimate of the reconstruction error which fully explores the intrinsic information embedded in the volume data and have arrived at a minimum of the reconstruction error under the L2 measurement by conducting a global optimization. Experimental results on various examples demonstrate the effectiveness of the proposed algorithm in reducing the reconstruction error and retaining the high-frequency details of the .dada field.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第8期1107-1113,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61232012,61272032) 浙江省自然科学基金(LY12F02002) 中国博士后基金(2011M501003)
关键词 体数据重建 拟插值 体数据可视化 volume reconstruction quasi-interpolation volume data visualization
  • 相关文献

参考文献13

  • 1Lorensen W E,Cline H E.Marching cubes:a high resolution3D surface construction algorithm [C] //Computer GraphicsProceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,1987:163-169. 被引量:1
  • 2Edelsbrunner H? HarerJ,Natarajan V* et al.Morse-smalecomplexes for piecewise linear 3-manifolds [C] //Proceedingsof the 19th Annual Symposium on Computational Geometry.New York:ACM Press,2003:361-370. 被引量:1
  • 3Pascucci V,Cole-McLaughlin K.Efficient computation of thetopology of level sets [C] //Proceedings of the Conference onVisualization.Los Alamitos:IEEE Computer Society Press,2002:187-194. 被引量:1
  • 4Pascucci V,Cole-McLaughlin K,Scorzelli G.Multi-resolution computation and presentation of contour trees[OL].[2012-08-28].http //pascucci.org/topology/contour_tree/. 被引量:1
  • 5Entezari A,Moller T.Extensions of the Z wart-Powell boxspline for volumetric data reconstruction on the Cartesianlattice [J].IEEE Transactions on Visualization and ComputerGraphics,2006' 12(5):1337-1344. 被引量:1
  • 6Entezari A,Dyer R,Moller T.Linear and cubic box splinesfor the body centered cubic lattice [C] //Proceedings of theConference on Visualization.Los Alamitos:IEEE ComputerSociety Press,2004 :11-18. 被引量:1
  • 7Entezari A,van de Ville D,Moller T.Practical box splinesfor reconstruction on the body centered cubic lattice [J].IEEETransactions on Visualization and Computer Graphics,2008,14(2):313-328. 被引量:1
  • 8Kim M,Entezari A,Peters J.Box spline reconstruction onthe face-centered cubic lattice [J].IEEE Transactions onVisualization and Computer Graphics,2008,14(6); 1523-1530. 被引量:1
  • 9de Boor C,Hollig K,Riemenschneider S.Box splines [M].Heidelberg:Springer,1993. 被引量:1
  • 10de Boor C,Hollig K.B-splines from parallelepipeds [J].Journal D'Analyse Mathematique,1982,42(1):99-115. 被引量:1

同被引文献46

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部