摘要
Biomass functions were established to estimate above-ground biomass of Siberian larch (Larix sibirica) in the Altai Mountains of Mon- golia. The functions are based on biomass sampling of trees from 18 different sites, which represent the driest locations within the natural range ofL. sibirica. The best performing regression model was found for the equations y = (D2 H)/(a+bD) for stem biomass, y = aDb for branch biomass, and y=aDb Hc for needle biomass, where D is the stem diameter at breast height and H is the tree height. The robustness of the biomass functions is assessed by comparison with equations which had been previously published from a plantation in Iceland. There, y=aDb Hc was found to be the most significant model for stem and total above-ground biomasses. Applying the equations from Iceland for estimating the above-ground biomass of trees from Mongolia resulted in the underesti- mation of the biomass in large-diameter trees and the overestimation of the biomass in thin trees. The underestimation of thick-stemmed trees is probably attributable to the higher wood density, which has to be ex- pected under the ultracontinental climate of Mongolia compared to the euoceanic climate of Iceland. The overestimation of the biomass in trees with low stem diameter is probably due to the high density of young growth in the not systematically managed forests of the Mongolian Altai Mountains, which inhibits branching, whereas the plantations in Iceland are likely to have been planted in lower densities.
Biomass functions were established to estimate above-ground biomass of Siberian larch (Larix sibirica) in the Altai Mountains of Mon- golia. The functions are based on biomass sampling of trees from 18 different sites, which represent the driest locations within the natural range ofL. sibirica. The best performing regression model was found for the equations y = (D2 H)/(a+bD) for stem biomass, y = aDb for branch biomass, and y=aDb Hc for needle biomass, where D is the stem diameter at breast height and H is the tree height. The robustness of the biomass functions is assessed by comparison with equations which had been previously published from a plantation in Iceland. There, y=aDb Hc was found to be the most significant model for stem and total above-ground biomasses. Applying the equations from Iceland for estimating the above-ground biomass of trees from Mongolia resulted in the underesti- mation of the biomass in large-diameter trees and the overestimation of the biomass in thin trees. The underestimation of thick-stemmed trees is probably attributable to the higher wood density, which has to be ex- pected under the ultracontinental climate of Mongolia compared to the euoceanic climate of Iceland. The overestimation of the biomass in trees with low stem diameter is probably due to the high density of young growth in the not systematically managed forests of the Mongolian Altai Mountains, which inhibits branching, whereas the plantations in Iceland are likely to have been planted in lower densities.
基金
funded by the Asian Research Center (ARC) based in the National University of Mongolia (Ulan Bator) The work was done in association with the project "Forest regeneration and biodiversity at the forest-steppe border of the Altai and Khangai Mountains under contrasting developments of livestock numbers in Kazakhstan and Mongolia" funded by the Volkswagen Foundation