期刊文献+

社会核算矩阵平衡方法研究 被引量:3

Study on the Balance Approach of the SAM
下载PDF
导出
摘要 本文针对双比例尺度(RAS)、交叉熵(CE)等方法在平衡社会核算矩阵(SAM)中仅从技术层面机械地进行平衡化处理致使先验信息损失的问题,提出了加权离差熵平方期望最小化方法;并以先验信息为基础,构造了初始加权矩阵和可行加权矩阵。同时,本文以中国2007年的非平衡SAM为例,对比研究RAS、CE和加权离差熵平方期望最小化三种方法对其进行平衡化处理的实际效果。结果表明:RAS方法得到的结果偏差相对较大,而CE方法和加权离差熵平方期望最小化方法得到的结果相对较精准;此外,加权离差熵平方期望最小化方法能够有效利用先验信息,避免有效信息的无谓损失。 Considering the defects of the RAS and Cross-Entropy(CE) approaches that losing the priori information when they are applied for the balance of the Social Accounting Matrix(SAM),this paper proposes the weighted approach which is based on minimizing the expectation of the deviation entropy square.And it constructs the weighting matrix in accordance with the degree of the prior information.Meanwhile,this paper takes the Chinese unbalanced SAM in 2007 as an example,and compares the real effects of balancing among RAS approach,CE approach and weighted approach based on minimizing the expectation of the deviation entropy square.And the results show that: RAS approach gets the results with a larger deviation,while the results produced by CE approach and weighted approach based on minimizing the expectation of the deviation entropy square are more accurate.Furthermore,weighted approach based on minimizing the expectation of the deviation entropy square can make flexible and effective use of the prior information and avoiding this deadweight loss of effective information,but RAS and CE approaches do not have this advantage.
作者 黄常锋
出处 《统计研究》 CSSCI 北大核心 2013年第7期82-88,共7页 Statistical Research
关键词 社会核算矩阵 平衡方法 加权 离差熵平方期望 先验信息 SAM Balance Approach Weighted Expectation of Deviation Entropy Square Priori Information
  • 相关文献

参考文献16

  • 1Stone R.. Multiple Classification in Social Accounting[ J]. Bulletin de l'institute International de Statistique, 1962(03 ) :215 - 233. 被引量:1
  • 2Schneider M. H. , Zenios S. A. , A Comparative Study of Algorithms for Matrix Balancing[J]. Operations Research,1990(03):439-455. 被引量:1
  • 3张欣著..可计算一般均衡模型的基本原理与编程[M].上海:格致出版社,2010:272.
  • 4Goaln A. , Judge G. , Robinson S. , Recovering Information from Incomplete or Partial Mu|tisectoral Economic Data[ J]. The Review of Economics and Statistics, 1994 (03) :541 - 549. 被引量:1
  • 5涂涛涛,马强.社会核算矩阵平衡方法研究——最小二乘交叉熵法[J].数量经济技术经济研究,2012,29(7):134-147. 被引量:11
  • 6Friedlander D. , A Technique for Estimating Contingency Tables, Given Marginal Totals and Some Supplemental Data[ J]. Journal of the Royal Statistical Society,1961 (03) :412-420. 被引量:1
  • 7Almon C.. Recent Methodological Advances in Input-Output in the United States and Canada [ C ] Fourth International Conference on Input-output Techniques, Geneva, 1968. 被引量:1
  • 8Goaln A., Vogel S. J., Estimation of Non-stationary Social Accounting Matrix Coefficients with Supply-Side Information [ J ]. Economic Systems Research,2000 ( 04 ) :447 - 471. 被引量:1
  • 9Jackson R., Murray A.. Alternative Input-Output Matrix Updating Formulations [ J ]. Economic Systems Research,2004 (02) : 135 - 148. 被引量:1
  • 10李宝瑜,马克卫.中国社会核算矩阵编制方法研究[J].统计研究,2011,28(9):19-24. 被引量:18

二级参考文献60

共引文献38

同被引文献28

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部