期刊文献+

示例学习与特征选择的规划模型方法 被引量:3

Integer- programming model for learning from examples and feature subset selection based on extension matrix
下载PDF
导出
摘要 以扩张矩阵理论为基础 ,应用数学规划理论提出了一种规划模型求解方法 ,可以更好地实现概念学习和特征提取。与传统的启发式算法相比 ,采用遗传算法求解的规划模型可以找到多个全局最优解以及可行解。实例计算表明了该方法的有效性。 Learning from examples and feature subset selection are the two basic problems and also the bottle neck in concepts extraction of machine learning. Based on extension matrix formed on positive and negative examples, we set up the integer programming model (IPM) for optimal rule extraction and feature subset selection. The IPM method can find the multiple optimal solution in theory and practice, and experiments reveal that IPM , while solved by genetic algorithms, runs more efficiently compared with heuristic algorithms as FCV, GS, HCV, GFS, etc.. We have used IPM as the core method of knowledge acquisition in data mining and knowledge discovery in databases about financial analysis and tax auditing, and got effective results.
出处 《系统工程学报》 CSCD 2000年第2期163-167,207,共6页 Journal of Systems Engineering
基金 国家自然科学基金!资助项目 ( 7940 0 0 13 )
关键词 示例学习 扩张矩阵 知识获取 机器学习 特征选择 learning from examples extension matrix inter programming model knowledge acquisition machines learning
  • 相关文献

参考文献6

二级参考文献11

  • 1Wu X,A Heuristic Covering Algorithm for Extension Matrix Approach.Department of Artificial Intelligence,1992年 被引量:1
  • 2洪家荣,Proc Int Computer Science Conference’88, Hong Kong,1988年 被引量:1
  • 3洪家荣,Int Jnal of Computer and Information Science,1985年,14卷,6期,421页 被引量:1
  • 4洪家荣,第三届全国机器学习研讨会论文集,1991年 被引量:1
  • 5洪家荣,Incremental Learning of Attribute-Based Descriptions from Examples, the Method and User’s Guide,1986年 被引量:1
  • 6曾黄麟,粗集理论及其应用,1998年 被引量:1
  • 7陈文伟,智能决策技术,1998年 被引量:1
  • 8Hu X,IEEE 1063-6382/96,1996年 被引量:1
  • 9Hu X,博士学位论文,1995年 被引量:1
  • 10洪家荣.示例学习的扩张矩阵理论[J].计算机学报,1991,14(6):401-410. 被引量:31

共引文献106

同被引文献26

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2Gong R,Zulkernine M,Abolmaesumi P.A Software Implementation of a Genetic Algorithm Based Approach to Network Intrusion Detection[C]//Proc. of Sixth ACIS International Conference on Software Engineering,Artificial Intelligence,Networking,and Parallel/Distributed Computing.Maryland; IEEE Press,2005:246-253. 被引量:1
  • 3El-Semary A,Edmonds J,Gonzalez-Pino J,et al.Applying Data Mining of Fuzzy Association Rules to Network Intrusion Detection[C]//Proc.of Information Assurance Workshop.West Point,NY:IEEE Press,2006.100-107. 被引量:1
  • 4Moradi M,Zulkernine M.A Neural Network Based System for Intrusion Detection and Classification of Attacks[C]//Proc.of the 2004 IEEE International Conference on Advances in Intelligent Systems-Theory and Applications.Luxembourg:IEEE Press,2004. 被引量:1
  • 5Mukkamala S,Sung A,Abraham A.Modeling intrusion detection systems using linear genetic programming approach[C]//Proc.of the 17th international conference on Innovations in applied artificial intelligence.New York:Springer-Verlag,2004:633-642. 被引量:1
  • 6Dasgupta D,Gonzalez F.An Intelligent Decision Support System for Intrusion Detection and Response[C]//Proc.of the International Workshop on Information Assurance in Computer Networks:Methods,Models,and Architectures for Network Security.New York;Springer-Verlag,2001:1-14. 被引量:1
  • 7Helmer G,Wong J,Honavar V,et al.Automated discovery of concise predictive rules for intrusion detection[J].The Journal of Systems and Software,2002,60(3):165-175. 被引量:1
  • 8Hong J R.AE1:An extension matrix approximate method for the general covering problem[J].International Journal of Computer and Information Science,1985,14(6):421-437. 被引量:1
  • 9MIT Lincoln Laboratory.1999 DARPA Intrusion Detection E-valuation Data Set[EB/OL].[2009-3-23].http://www.ll.mit edu/mission/communications/ist/corpora/ideval/data/1999d-ata.html. 被引量:1
  • 10Lippmann R,Haines J,Fried D,et al.The 1999 DARPA Off-Line Intrusion Detection Evaluation[J].Computer Networks:The International Journal of Computer and Telecommunications Networking,2000,34(4):579-595. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部