期刊文献+

火箭发动机燃烧室液膜-再生复合冷却数值仿真 被引量:6

Numerical simulation of liquid film and regenerative cooling in a rocket combustor
原文传递
导出
摘要 对液体火箭发动机燃烧室液膜-再生复合冷却进行了数值计算,针对液膜-燃气流场区多组分、轴对称Navier-Stokes(N-S)方程和再生冷却区单组分N-S方程进行求解,并使用k-ε方程求解湍流流动.对文献中的某液氧/煤油火箭发动机燃烧室进行了数值模拟,该模型的计算结果能够与文献中的计算结果较好地吻合.计算结果表明:①液膜-再生复合冷却能有效地减少壁面热流密度和降低壁面温度,且其形成的冷气边区覆盖了整个燃烧室及喷管壁面;②再生冷却液入口质量流量越大,复合冷却作用越明显,壁面温度越低;③随再生冷却液质量流量的不同其温升在450~600K之间,且质量流量越大,再生冷却液的温升越小.④壁面煤油的质量分数不断下降,在喷管出口壁面处达到最低值,但含有煤油的区域不断变大. Numerical calculation was made for liquid film and regenerative cooling in a liquid rocket combustor.Multiple species axial Navier-Stocks(N-S) equations were solved for liquid-film/hot-gas flow field,single specie axial N-S equations were solved for regenerative flow field and k-ε equations for turbulent flow.A kerosene/LOx rocket combustor was simulated,and the results of the model agreed well with the results in reference.The results show that:(1) Liquid film and regenerative cooling decrease the wall flux and wall temperature effectively,and the cold area covers the whole combustor and nozzle wall.(2) The cooling effect becomes better with the increase of the regenerative coolant.(3) The temperature rise of the regenerative coolant is between 450~600 K,and becomes smaller when the mass flow rate of the regenerative coolant is larger.(4) The mass fraction of kerosene on the inner wall decreases along the axis and reaches the lowest value at the outlet,but the area containing kerosene becomes larger.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2013年第6期1357-1363,共7页 Journal of Aerospace Power
关键词 液体火箭发动机 液膜再生复合冷却 热流密度 数值计算 湍流 liquid rocket engine liquid film and regenerative cooling heat flux numerical calculation turbulent flow
  • 相关文献

参考文献15

  • 1Shedd T A,Corn M L,Cohen J M,et al. Liquid film forma- tion by an impinging jet in a high velocity air streamERS. AIAA 2009-998,2009. 被引量:1
  • 2Inamura T, Amagasaki S, Yanaoka H. Thickness of liquid film formed by impinging jets on a concave wall[J] Jour- nal of Propulsion and Power, 2007,23(3) :612 817. 被引量:1
  • 3Sirignano W A, Rankin D D. UCI liquid film miniature combustor. AIAA 2009 5317,2009. 被引量:1
  • 4Kanda T, Masuya G, Wakamatsu, et al. Effect of regenera- tive cooling on rocket engine specific impulse[J]. Journal of Propulsion and Power,1994,10(2) :286-288. 被引量:1
  • 5Bao W,Qin J,Zhou W X,et al. Performance limit analysis of recooled cycle for regenerative cooling systems[J]. En- ergy Conversion and Management, 2009,50(8) : 1908-1914. 被引量:1
  • 6Mirzamoghadam A V. Advanced liquid rocket chamber wall cooling design criteria[R]. AIAA 91-1982,1991. 被引量:1
  • 7Ulas A,Boysan E. Numerical analysis of regenerative cool- ing in liquid propellant rocket engines[J]. Aerospace Sci- ence and Technology,2011,18(11) :349-358. 被引量:1
  • 8Dellimore K H,Marshall A W,Trouve A, et al. Numerical simulation of subsonic slot-iet film cooling of an adiabatic wailERS. AIAA 2009-1577,2009. 被引量:1
  • 9Yang W, Sun B. Numerical simulation of liquid film in a liquid oxygen/rocket propellant 1 liquid rocket[J]. AIAA Journal of Thermophysics and Heat Transfer, 2012, 26 (2) :328-336. 被引量:1
  • 10Ely M J, Jubran B A. A numerical study on improving large angle film cooling performance through the use of sister holes[JJ. Numerical Heat Transfer:Part A,2009,55 (7) :634-653. 被引量:1

二级参考文献16

  • 1孙姝,郭荣伟.Serpentine Inlet Performance Enhancement Using Vortex Generator Based Flow Control[J].Chinese Journal of Aeronautics,2006,19(1):10-17. 被引量:17
  • 2Ely M J, Jubran B A. A numerical study on improving large angle film cooling performance through the use of sister holes[J]. Numerical Heat Transfer Part A, 2009,55 (7) :634-653. 被引量:1
  • 3Yang X B,Badcocky K J,Richards B E, et al. A numerical study of hypersonic turbulent film cooling[R]. AIAA 2005 386,2005. 被引量:1
  • 4Ajmani K,Breisaeher K J,Ghosn L J,et al. Numerical and experimental studies of a film cooled pulsed detonation tube [R]. AIAA 2005-3509,2005. 被引量:1
  • 5Yu Y C,Schuff R Z,Anderson W E. Liquial film cooling using swirl in rocket combustors[R]. AIAA 2004-3360,2004. 被引量:1
  • 6Zhang H W,He Y L,Tao W Q. Numerical study of film and regenerative cooling in a thrust chamber at high pres- sure[J].Numerical Heat Transfer, 2007,52 ( 11 ) : 991-1007. 被引量:1
  • 7Schiller H P, Biba S. Model for the prediction of heat transfer coefficients in the leading edge region of film cooled turbine blades[R]. AIAA 98-4028,1998. 被引量:1
  • 8Collie W V, Burgun R, Neinzen S. Advanced propulsion system design and integration for a turbojet powered un- manned aerial vehicle[R]. AIAA-2003-0415,2003. 被引量:1
  • 9Rabe A,Andeson J. A facility for Active flow control research in serpentine inlets[R]. AIAA Paper 2002-0510,2002. 被引量:1
  • 10Brear M J,Warfield Z, Mangus J F. Flow separation within the engine inlet of an uninhabited combat air vehicle (UCAV)[J].Journal of Fluids Engineering, 2004,126 (2) : 266-272. 被引量:1

共引文献8

同被引文献25

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部