摘要
对液体火箭发动机燃烧室液膜-再生复合冷却进行了数值计算,针对液膜-燃气流场区多组分、轴对称Navier-Stokes(N-S)方程和再生冷却区单组分N-S方程进行求解,并使用k-ε方程求解湍流流动.对文献中的某液氧/煤油火箭发动机燃烧室进行了数值模拟,该模型的计算结果能够与文献中的计算结果较好地吻合.计算结果表明:①液膜-再生复合冷却能有效地减少壁面热流密度和降低壁面温度,且其形成的冷气边区覆盖了整个燃烧室及喷管壁面;②再生冷却液入口质量流量越大,复合冷却作用越明显,壁面温度越低;③随再生冷却液质量流量的不同其温升在450~600K之间,且质量流量越大,再生冷却液的温升越小.④壁面煤油的质量分数不断下降,在喷管出口壁面处达到最低值,但含有煤油的区域不断变大.
Numerical calculation was made for liquid film and regenerative cooling in a liquid rocket combustor.Multiple species axial Navier-Stocks(N-S) equations were solved for liquid-film/hot-gas flow field,single specie axial N-S equations were solved for regenerative flow field and k-ε equations for turbulent flow.A kerosene/LOx rocket combustor was simulated,and the results of the model agreed well with the results in reference.The results show that:(1) Liquid film and regenerative cooling decrease the wall flux and wall temperature effectively,and the cold area covers the whole combustor and nozzle wall.(2) The cooling effect becomes better with the increase of the regenerative coolant.(3) The temperature rise of the regenerative coolant is between 450~600 K,and becomes smaller when the mass flow rate of the regenerative coolant is larger.(4) The mass fraction of kerosene on the inner wall decreases along the axis and reaches the lowest value at the outlet,but the area containing kerosene becomes larger.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2013年第6期1357-1363,共7页
Journal of Aerospace Power
关键词
液体火箭发动机
液膜再生复合冷却
热流密度
数值计算
湍流
liquid rocket engine
liquid film and regenerative cooling
heat flux
numerical calculation
turbulent flow