期刊文献+

复域高阶线性微分方程解的某些振荡结果(英文)

SOME OSCILLATION RESULTS OF SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS IN THE COMPLEX PLANE
下载PDF
导出
摘要 本文研究了线性微分方程解的增长性.运用值分布理论,得到方程解的增长的精确估计.进一步,讨论了上述方程解以及解的一阶,二阶导数与小函数的关系. In this paper, we study the growth of solutions of differential equation. By using the theory of value distribution, we obtain some precise estimates of the growth of solutions of the equation. Furthermore, the relations between functions of small growth and the solutions of higher order differential equations, and their first, second derivatives are shown.
出处 《数学杂志》 CSCD 北大核心 2013年第4期591-602,共12页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(11001057) NSF of Jiangsu Province(BK2010234) Project of Qinglan of Jiangsu Province
关键词 线性微分方程 整函数 亚纯函数 零点收敛指数 linear differential equation entire functions meromorphic function exponentof convergence of zero-sequence
  • 相关文献

参考文献4

二级参考文献27

  • 1Langley J. K., On complex oscillation and a problem of Ozawa [J], Kodai Math. J.,1986, 9:430-439. 被引量:1
  • 2Laine I., Nevanlinna Theory and Complex Differential Equations [M], Berlin: W.de Gruyter, 1993. 被引量:1
  • 3Ozawa M., On a solution of w^11 + e^-zw^1 + (az + b)w = 0 [J], Kodai Math. J., 1980,3:295-309. 被引量:1
  • 4Valiron G., Lectures on the General Theory of Integral Functions [M], New York:Chelsea, 1949. 被引量:1
  • 5Hayman W., The local growth of power series: a survey of the Wiman-Valiron method[J], Canad. Math. Bull., 1974, 17:317-358. 被引量:1
  • 6Hille E., Ordinary Differential Equations in the Complex Domain [M], New York: Wiley,1976. 被引量:1
  • 7Amemiya I. and Ozawa M., Non-existence of finite order solutions of w^11 + e^-zw^1 +Q(z)w = 0 [J], Hokkaido Math. J., 1981, 10:1-17. 被引量:1
  • 8Chen Zongxuan, The growth of solutions of f^11 + e^-zf^1 + Q(z)f = 0 where the order(Q) = 1 [J], Science in China (Series A), 2002, 45:290-300. 被引量:1
  • 9Chen Zongxuan, Zeros of meromorphic solutions of higher order linear differential equations [J], Analysis, 1994, 14:425-438. 被引量:1
  • 10Frei M., Uber die subnormalen losungen der differentialgleichung w^11+ e^-zw^1+(konst.)w = 0 [J], Comment. Math. Helv., 1962, 36:1-8. 被引量:1

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部