期刊文献+

三旋翼飞行器动力学分析及建模 被引量:14

Dynamical analysis and mathematical modeling of tricopter
下载PDF
导出
摘要 根据国内外旋翼飞行器的发展趋势,提出了三旋翼飞行器的研究方案。首先,介绍了三旋翼无人飞行器的机械结构,分析了它的整体物理力矩,理论解决了力矩相互抵消的问题。其次,对飞行器的起飞、俯仰、滚转、偏航等姿态进行了数学分析,建立了三旋翼无人飞行器的数学模型。最后,利用PID控制法和线性二次高斯(LQG)控制方法设计了三旋翼飞行器的控制器。实验结果表明,PID控制器振荡时间比较长,次数较多,没有达到理想状态;利用LQG方法对控制器进行了改进,对各个通道阶跃函数及脉冲响应函数仿真图的分析显示,系统改进后响应速度有了提高,2s左右受控达到平衡。本文的研究为无人机的姿态控制提供了理论基础。 This paper proposes research schemes for a tricopter based on its developing trend.It focuses on its mechanical structures and physical moments and solves the problem that moments in the system offset each other.Then,it analyzes aircraft attitudes on launching,pitching,rolling and yawing by aerodynamic analysis and establishes a mathematical model for the tricopter.Finally,the PID and Linear Quadratic Gaussian(LQG) control methods are used to design a controller for the tricopter.The results show that the PID method does not achieve the desired states for its long equilibrium time and overmuch oscillations.However,after improving the controller by the LQG method,the simulation experiments on step functions and pulse response functions from different channels show that the response speed of the control has increased,and the balance of control can be implemented by about 2 s.the research can provide theoretical function for controlling aircraft attitudes.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第7期1873-1880,共8页 Optics and Precision Engineering
基金 长春理工大学科研发展基金资助项目(No.XJJ2008-02)
关键词 三旋翼飞行器 飞行姿态 矩阵分析 PID控制 LQG控制 tricopter flight attitude torque analysis PID control Linear Quadratic Gaussian(LQG) control
  • 相关文献

参考文献10

  • 1刘丽丽..四旋翼飞行仿真器的建模及控制方法的研究[D].中南大学,2009:
  • 2刘焕晔..小型四旋翼飞行器飞行控制系统研究与设计[D].上海交通大学,2009:
  • 3王树刚..四旋翼直升机控制问题研究[D].哈尔滨工业大学,2006:
  • 4SALAZAR--CRUZ S, KENDOUL F, etal.. Real- Time Control of a Small-Scale Helicopter Having Three Rotors[C]. International Conference on In- telligent RObots and Systems, Bejing , P. R. China: IROS, 2006: 2924-2929. 被引量:1
  • 5SALAZAR-CRUZ S, LOZANO R. Stabilization and nonlinear control for a novel tri-rotor mini-air- craft[C]. Proceedings of International Conference on Robotics and Automation, Barcelone, Spain: IEEE ICRA'05, April 2005 : 2612-2617. 被引量:1
  • 6TAYEBI A, MCGILVRAY S. Attitude stabilization of a four-rotor aerial robot[C]. IEEE Confer-ence on Decision and Control, Atlantis, Paradise Island, Bahamas: CDC, 2004,2: 1216-1221. 被引量:1
  • 7GUENARD N, HAMEL T, MOREAU V. Dy namic modeling and intuitive control strategy for an "X4-flyer" [C]. International Conference on Con- trol and Automation, Budapest, Hungary: ICCA'05, 2005,1: 141-146. 被引量:1
  • 8SALAZAR-CRUZ S, KENDOUL F, et al.. Real- Time stabilization of a small three-rotor aircraft[J]. Aerospace and Electronic Systems, 2008, 44 (2) :783-794. 被引量:1
  • 9ESCARENO J, SANCHEZ A, GARCIA O, LOZ- ANO R. Triple tilting rotor mini-UAV: modeling and embedded control of the attitude[C]. American Control Conference, Seattle, Washington, USA : ACC, 2008: 3476-3481. 被引量:1
  • 10CASTILLO P, DZUL A, LOZANO R. Real-Time stabilization and tracking of a four-rotor mini rotocraft[C]. 43th IEEE conf. Control Systems Technology, July, 2004: 12(4): 510-516. 被引量:1

同被引文献77

引证文献14

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部